Skip to main content
Log in

Equation of State for a Liquid with Double Exponential Potential

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

We propose a simple method for the approximation of the integrand in the integral representation of the free energy of a system of particles with two-particle interactions admitting a Fourier expansion, based on which the equation of state of a with a double exponential potential liquid is obtained without laborious calculations. The found temperature dependences of the equilibrium thermodynamic properties appropriately describe the corresponding experimental data. The effectiveness of the approach is demonstrated on the example of a model with double Yukawa potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Baxter, R.J., Exactly Solved Models in Statistical Mechanics, New York: Academic, 1982.

    MATH  Google Scholar 

  2. Kas, M., Uhlenbeck, G.E. and Hemmer, P.C., J. Math. Phys., 1963, vol. 4, p. 216.

    Article  ADS  Google Scholar 

  3. Lieb, E.H. and Fa Yuen Wu, in Phase Transitions and Critical Phenomena, vol. 1: Exact Results, Domb, C. and Green, M.S., Eds., New York: Academic, 1972.

  4. Lin, Y.-Z., Li, Y.-G., and Lu, J.-F., Mol. Phys., 2004, vol. 102, no. 1, p. 63.

    Article  ADS  Google Scholar 

  5. Guerin, H., Phys. A (Amsterdam, Neth.), 2002, vol. 304, p. 327.

    MATH  Google Scholar 

  6. Khedr, M. Bahaa., Osman, S.M., and Al Busaidi, M.S., Phys. Chem. Liq., 2009, vol. 47, no. 3, p. 237.

    Article  Google Scholar 

  7. Kasimov, N.S., Ukr. Fiz. Zh., 1988, vol. 33, no. 11, p. 1666.

    Google Scholar 

  8. Kasimov, N.S., Ukr. Fiz. Zh., 1984, vol. 29, no. 9, p. 1327.

    Google Scholar 

  9. Heyes, R. and Rickayzen, G., J. Phys.: Condens. Matter, 2007, vol. 19, 416101.

    Google Scholar 

  10. Zakharov, A.Yu. and Loktionov, I.K., Theor. Math. Phys., 1999, vol. 119, no. 1, p. 532.

    Article  Google Scholar 

  11. Zubarev, D.N., Dokl. Akad. Nauk SSSR, 1954, vol. 35, no. 4, p. 757.

    Google Scholar 

  12. Zakharov, A.Yu., Phys. Lett. A, 1990, vol. 147, nos. 7–8, p. 442.

    Article  MathSciNet  ADS  Google Scholar 

  13. Loktionov, I.K., High Temp., 2011, vol. 49, no. 4, 512.

    Article  Google Scholar 

  14. Loktionov, I.K., High Temp., 2012, vol. 50, no. 6, p. 708.

    Article  Google Scholar 

  15. Loktionov, I.K., High Temp., 2014, vol. 52, no. 6, p. 390.

    Article  Google Scholar 

  16. Loktionov, I.K., High Temp., 2019, vol. 57, no. 5, p. 648.

    Article  Google Scholar 

  17. Ruelle, D., Statistical Mechanics: Rigorous Results, London: Imperial College Press, 1969.

    MATH  Google Scholar 

  18. Baus, M. and Tejero, C.F., Equilibrium Statistical Physics: Phases of Matter and Phase Transitions, Brussels: Springer, 2008.

    Book  Google Scholar 

  19. Stewart, R.B. and Jacobsen, R.T., J. Phys. Chem. Ref. Data, 1989, vol. 18, no. 2, p. 639.

    Article  ADS  Google Scholar 

  20. Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Heidelberg: Springer, 2013, vol. 2, part 4, p. 757.

Download references

ACKNOWLEDGMENTS

The author expresses his sincere gratitude to Professor A.Yu. Zakharov for helpful advice, valuable comments, and discussion of the results of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Loktionov.

Additional information

Translated by L. Trubitsyna

APPENDIX

APPENDIX

To prove the inequality

$$\frac{{\ln \left( {1 + xD} \right)}}{{\ln \left( {1 + xd} \right)}} > \frac{D}{d},$$
(22)

in which 0 < D < 1, 0 < d < 1, D < d, in region G1, x > 0, let us consider the function

$$\varphi \left( \nu \right) = {{\left( {1 + p} \right)}^{\nu }} - \left( {1 + p\nu } \right),$$
(23)

where 0 ≤ ν ≤ 1, p > 0.

Differentiating function (23) twice with respect to ν, we get

$$\varphi {\kern 1pt} ''\left( \nu \right) = {{\left( {1 + p} \right)}^{\nu }}{{\left[ {\ln \left( {1 + p} \right)} \right]}^{2}} > 0.$$

It follows from this equation that the curve φ(ν) is concave, and, since φ(0) = φ(1) = 0, then φ(ν) < 0 at 0 < ν < 1, or, as follows from (23):

$${{\left( {1 + p} \right)}^{\nu }} < \left( {1 + p\nu } \right).$$
(24)

By assuming in (24) ν = D/d and p = xd, we arrive at the inequality

$${{\left( {1 + xd} \right)}^{{{D \mathord{\left/ {\vphantom {D d}} \right. \kern-0em} d}}}} < \left( {1 + xD} \right).$$
(25)

Taking the logarithm of (25), we obtain inequality (22), from which inequality (9) follows. In conclusion, it should be noted that the values used in the proof, ν = 0 (D = 0) and ν = 1 (d = 1), correspond to the upper and lower boundaries of the region G1; however, the actual values of δ and ε are contained inside G1, where D ∈ (0; 1) and d ∈ (0; 1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loktionov, I.K. Equation of State for a Liquid with Double Exponential Potential. High Temp 59, 184–191 (2021). https://doi.org/10.1134/S0018151X21020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21020073

Navigation