Skip to main content
Log in

Critical Outflow of a Vapor–Liquid Flow through a Grain Layer

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

Based on previous experimental studies, we carried out a numerical simulation of the process of the critical outflow of a vapor–liquid flow in cylindrical channels filled with a layer of spherical particles. The process is characterized by a sharp boiling up of the liquid and a change in the thermohydraulic properties of the flow. The spherical fillings were particles 2, 4, and 8 mm in diameter, and the layer lengths were 250 and 355 mm. The effect of the material and the temperature of the filling on the intensification of vaporization and the profiles of the vapor content over the channel cross section were studied. Data were obtained on the critical flow rate, the speed of sound for various system configurations with respect to the particle diameter, the length of the layer of spherical particles, their material, and the level of the initial vapor content. The speed of sound is estimated for the gasdynamic blocking of a vapor–liquid flow, the values of which are in the region between the thermodynamically equilibrium and the frozen speeds of sound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 3, p. 421.

    Article  Google Scholar 

  2. Nazanskii, C.L. and Solokhin, A.V., Tonkie Khim. Tekhnol., 2019, vol. 14, no. 5, p. 31.

    Google Scholar 

  3. Nigmatulin, B.I. and Soplenkov, K.I., Teplofiz. Vys. Temp., 1980, vol. 18, no. 1, p. 118.

    Google Scholar 

  4. Travis, J.R., Piccioni Koch, D., and Breitung, W., Int. J. Hydrogen Energy, 2012, vol. 37, no. 22, p. 17373.

    Article  Google Scholar 

  5. Boccardi, G., Bubbico, R., Celata, G.P., and Mazzarotta, B., Chem. Eng. Sci., 2005, vol. 60, no. 19, p. 5284.

    Article  Google Scholar 

  6. Wilkening, H. and Baraldi, D., Int. J. Hydrogen Energy, 2007, vol. 32, no. 13, p. 2206.

    Article  Google Scholar 

  7. Sorokin, V.V., High Temp., 2008, vol. 46, no. 4, p. 523.

    Article  Google Scholar 

  8. Chandra, V., Peters, E., and Kuipers, J., Chem. Eng. J., 2020, vol. 385, no. 5, p. 769. https://doi.org/10.1016/j.cej.2019.123641

    Article  Google Scholar 

  9. Avdeev, A.A., High Temp., 2017, vol. 55, no. 5, p. 753.

    Article  Google Scholar 

  10. Smorchkova, Y.V., Varava, A.N., Dedov, A.V., and Komov, A.T., J. Phys.: Conf. Ser., 2016, vol. 754, no. 11, 112008. https://doi.org/10.1088/1742-6596/754/11/112008

    Article  Google Scholar 

  11. Tairov, E.A., Pokusaev, B.G., and Bykova, S.M., High Temp., 2016, vol. 54, no. 2, p. 261.

    Article  Google Scholar 

  12. Tairov, E.A., Tairova, E.V., and Khan, P.V., Vestn. Irkutsk. Gos. Tekh. Univ., 2018, vol. 22, no. 9, p. 162.

  13. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987.

  14. Tairov, E.A. and Khan, P.V., J. Phys.: Conf. Ser., 2019, p. 1382. https://doi.org/10.1088/1742-6596/1382/1/012101

  15. Pokusaev, B.G., Tairov, E.A., and Gritsenko, M.Yu., High Temp., 2004, vol. 42, no. 6, p. 961.

    Article  Google Scholar 

  16. Gubaidullin, A.A., Ivandaev, A.I., and Nigmatullin, R.I., Teplofiz. Vys. Temp., 1978, vol. 6, no. 3, p. 556.

    Google Scholar 

  17. Bartosiewicz, Y., Seynhaeve, J.-M., and Serre, G., NURETH-14: The 14th Int. Topical Meeting on Nuclear Reactor Thermalhydraulics, Toronto: Canada, 2011, p. 1.

  18. Avdeev, A.A., Pekhterev, V.P., and Sirenko, E.I., Sov. At. Energy, 1987, vol. 63, p. 570.

    Article  Google Scholar 

  19. De Lorenzo, M., Lafon, Ph., Seynhaeve, J.-M., and Bartosiewicz, Y., Int. J. Multiphase Flow, 2017, vol. 92, p. 112.

    Article  MathSciNet  Google Scholar 

  20. Bartosiewicz, Y. and Seynhaeve, J.-M., ICONE22: 22nd Int. Conf. on Nuclear Engineering, Prague, 2014, p. 1.

  21. Monaghan, J.J., Rep. Prog. Phys., 2005, vol. 68, p. 1703.

    Article  ADS  Google Scholar 

  22. Pütz, M. and Nielaba, P., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2015, vol. 91, 032303. https://doi.org/10.1103/PhysRevE.91.032303

    Article  ADS  Google Scholar 

  23. Filippov, G.A., Grishanin, E.I., Konditerov, M.V., Mastyukin, V.P., Trubachev, V.M., Fal’kovskii, L.N., Fonarev, B.I., and Momot, G.V., At. Energy, 2007, vol. 103, p. 875.

    Article  Google Scholar 

  24. Pokusaev, B.G., Tairov, E.A., and Vasil’ev, S.A., Acoust. Phys., 2010, vol. 56, no. 3, p. 306.

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported within the framework of the implementation of the basic part of the state assignment of the Moscow Polytechnic University (project no. AAAA-A20-120092190052-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Khramtsov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramtsov, D.P., Pokusaev, B.G., Nekrasov, D.A. et al. Critical Outflow of a Vapor–Liquid Flow through a Grain Layer. High Temp 59, 335–341 (2021). https://doi.org/10.1134/S0018151X2102005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X2102005X

Navigation