Skip to main content

Ignition of a Propane-Air Mixture for a Reflected Shock Wave at High Pressures


Experimental data on the ignition delay times in a stoichiometric propane-air mixture have been obtained. The experiments were carried out on a shock tube in a temperature range of 1065–1595 K behind the front of the reflected shock wave at pressures of 23–33 atm. A comparison of the obtained data with the results of other measurements and the data from kinetic calculations is presented.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. Frolov, S.M., Aksenov, V.S., and Ivanov, V.S., Russ. J. Phys. Chem B, 2011, vol. 5, no. 8, 625.

    Article  Google Scholar 

  2. Kotov, D.V. and Surzhikov, S.T., High Temp., 2012, vol. 50, no. 1, p. 120.

    Article  Google Scholar 

  3. Tunik, Y.V., Int. J. Hydrogen Energy, 2018, vol. 43, no. 41, p. 19260.

    Article  Google Scholar 

  4. Tunik, Yu.V., Gerasimov, G.Ya., Levashov, V.Yu., and Slavinskaya, N.A., Combust., Explos. Shock Waves (E-ngl. Transl.), 2020, vol. 56, no. 3, p. 344.

  5. Penyazkov, O.G., Ragotner, K.A., Dean, A.J., and Varatharajan, B., Proc. Combust. Inst., 2005, vol. 30, no. 2, p. 1941.

    Article  Google Scholar 

  6. Schwer, D. and Kailasanath, K., Proc. Combust. Inst., 2013, vol. 34, no. 2, p. 1991.

    Article  Google Scholar 

  7. Titova, N.S., Kuleshov, P.S., Favorskii, O.N., and Starik, A.M., Int. J. Hydrogen Energy, 2014, vol. 39, no. 12, p. 6764.

    Article  Google Scholar 

  8. Gidaspov, V.Yu. and Severina, N.S., High Temp., 2017, vol. 55, no. 5, p. 777.

    Article  Google Scholar 

  9. Tang, C., Man, X., Wei, L., Pan, L., and Huang, Z., Combust. Flame, 2013, vol. 160, no. 11, p. 2283.

    Article  Google Scholar 

  10. Zhang, J., Hu, E., Zhang, Z., Pan, L., and Huang, Z., Energy Fuels, 2013, vol. 27, no. 6, p. 3480.

    Article  Google Scholar 

  11. Yang, K., Zhan, C., Man, X., Guan, L., Huang, Z., and Tang, C., Energy Fuels, 2016, vol. 30, no. 1, p. 717.

    Article  Google Scholar 

  12. Brown, C.J. and Thomas, G.O., Combust. Flame, 1999, vol. 117, no. 4, p. 861.

    Article  Google Scholar 

  13. Pavlov, V.A. and Gerasimov, G.Ya., J. Eng. Phys. Thermophys., 2014, vol. 87, no. 6, p. 1291.

    Article  Google Scholar 

  14. Experimental complex “Shock tube.”

  15. A Chemical Equilibrium Program for Windows.

  16. Titova, N.S., Kuleshov, P.S., and Starik, A.M., Combust., Explos. Shock Waves (Engl. Transl.), 2011, vol. 47, no. 3, p. 249.

  17. Herzler, J., Jeric, L., and Roth, P., Combust. Sci. Technol., 2004, vol. 176, no. 10, p. 1627.

    Article  Google Scholar 

  18. Zhukov, V.P., Sechenov, V.A., and Starikovskii, A.Yu., Kinet Catal., 2005, vol. 46, no. 3, p. 319.

    Article  Google Scholar 

  19. Gallagher, S.M., Curran, H.J., Metcalfe, W.K., Healy, D., Simmie, J.M., and Bourque, G., Combust. Flame, 2008, vol. 153, nos. 1–2, p. 316.

    Article  Google Scholar 

  20. Petrova, M.V. and Williams, F.A., Combust. Flame, 2006, vol. 144, no. 3, p. 526.

    Article  Google Scholar 

  21. Saxena, P. and Williams, F.A., Combust. Flame, 2006, vol. 145, nos. 1–2, p. 316.

    Article  Google Scholar 

  22. Prince, J.C. and Williams, F.A., Combust. Flame, 2012, vol. 157, no. 7, p. 2336.

    Article  Google Scholar 

Download references


The study was supported by the Russian Foundation for Basic Research (project no. 20-08-00343).

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. Yu. Levashov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kozlov, P.V., Akimov, Y.V., Gerasimov, G.Y. et al. Ignition of a Propane-Air Mixture for a Reflected Shock Wave at High Pressures. High Temp 59, 240–244 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: