Skip to main content
Log in

Dust-Acoustic Rogue Waves in Opposite Polarity Dusty Plasma Featuring Nonextensive Statistics

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

Modulational instability of dust-acoustic waves, which propagate in an opposite polarity dusty plasma system containing inertial warm negatively and positively charged massive dust grains as well as nonextensive q-distributed electrons and ions has been theoretically investigated. The nonlinear Schrödinger equation is derived by employing the reductive perturbation method. The nonlinear Schrödinger equation predicts the conditions of the modulational instability of dust-acoustic waves and the formation of dust-acoustic rogue waves in a nonlinear and dispersive plasma medium. It is observed that the basic features of the dust-acoustic rogue waves (viz., amplitude and width) are significantly modified by the various plasma parameters such as nonextensivity of electrons and ions, electron number density, electron temperature, ion number density, ion temperature, the mass and number density of the dust grains, etc. The application of the results in space and laboratory opposite polarity dusty plasma is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Shukla, P.K. and Mamun, A.A., Introduction to Dusty Plasma Physics, Bristol: Inst. Phys. Publ., 2002.

    Book  Google Scholar 

  2. El-Taibany, W.F., Phys. Plasmas, 2013, vol. 20, 093701.

    Article  ADS  Google Scholar 

  3. Rahman, M.H., Mannan, A., Chowdhury, N.A., and Mamun, A.A., Phys. Plasmas, 2018, vol. 25, 102118.

    Article  ADS  Google Scholar 

  4. Jahan, S., Chowdhury, N.A., Mannan, A., and Mamun, A.A., Commun. Theor. Phys., 2019, vol. 71, p. 327.

    Article  ADS  Google Scholar 

  5. Ali, F.S., Ali, M.A., Ali, R.A., and Lnculet, I.I., J. Electrost., 1998, vol. 45, p. 139.

    Article  Google Scholar 

  6. Zhao, H., Castle, G.S.P., and Lnculet, I.I., J. Electrost., 2002, vol. 55, p. 261.

    Article  Google Scholar 

  7. Mendis, D.A. and Horányi, M., Geophys. Mongr. Ser., 1991, vol. 61, p. 17.

    Google Scholar 

  8. Chow, V.W., Mendis, D.A., and Rosenberg, M., J. Geophys. Res., 1993, vol. 98, p. 19065.

    Article  ADS  Google Scholar 

  9. Horányi, M., Morfill, G.E., and Grün, E., Nature, 1993, vol. 363, p. 144.

    Article  ADS  Google Scholar 

  10. Shukla, P.K. and Rosenberg, M., Phys. Scr., 2006, vol. 73, p. 196.

    Article  ADS  Google Scholar 

  11. Angelo, N.D., J. Phys. D: Appl. Phys., 2004, vol. 37, p. 860.

    Article  ADS  Google Scholar 

  12. Mamun, A.A. and Shukla, P.K., Geophys. Res. Lett., 2002, vol. 29, p. 1870.

    Article  ADS  Google Scholar 

  13. Renyi, A., Acta Math. Acad. Sci. Hung., 1955, vol. 6, p. 285.

    Article  Google Scholar 

  14. Tsallis, C., J. Stat. Phys., 1988, vol. 52, p. 479.

    Article  ADS  Google Scholar 

  15. Chowdhury, N.A., Mannan, A., Hasan, M.M., and Mamun, A.A., Chaos, 2017, vol. 27, 093105.

    Article  ADS  MathSciNet  Google Scholar 

  16. Bains, A.S., Tribeche, M., and Ng, C.S., Astrophys. Space Sci., 2013, vol. 343, p. 621.

    Article  ADS  Google Scholar 

  17. Plastino, A.R. and Plastino, A., Phys. Lett. A, 1993, vol. 174, p. 384.

    Article  ADS  MathSciNet  Google Scholar 

  18. Gervino, G., Lavagno, A., and Pigato, D., Cent. Eur. J. Phys., 2012, vol. 10, p. 594.

    Google Scholar 

  19. Feron, C. and Hjorth, J., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2008, vol. 77, 022106.

    Article  ADS  Google Scholar 

  20. Asbridge, J.R., Bame, S.J., and Strong, I.B., J. Geophys. Res., 1968, vol. 73, p. 5777.

    Article  ADS  Google Scholar 

  21. Vladimirov, S.V. and Ostrikov, K.J., Phys. Rep., 2004, vol. 393, p. 175.

    Article  ADS  Google Scholar 

  22. Akhmediev, N., Ankiewicz, A., and Soto-Crespo, J.M., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, vol. 80, 026601.

    Article  Google Scholar 

  23. Moslem, W.M., Sabry, R., El-Labany, S.K., and Shukla, P.K., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2011, vol. 84, 066402.

    Article  Google Scholar 

  24. Moslem, W.M., Shukla, P.K., and Eliasson, B., Europhys. Lett., 2011, vol. 96, 25002.

    Article  ADS  Google Scholar 

  25. Solli, D.R., Ropers, C., Koonath, P., and Jalali, B., Nature, 2007, vol. 450, p. 1054.

    Article  ADS  Google Scholar 

  26. Kibler, B., Fatome, J., Finot, C., et al., Nat. Phys., 2010, vol. 6, p. 790.

    Article  Google Scholar 

  27. Bludov, Y.V., Konotop, V.V., and Akhmediev, N., Phys. Rev. A: At., Mol., Opt. Phys., 2009, vol. 80, 033610.

    Google Scholar 

  28. Yan, Z., Commun. Theor. Phys., 2010, vol. 54, p. 947.

    Article  ADS  Google Scholar 

  29. Chowdhury, N.A., Mannan, A., Hasan, M.M., and Mamun, A.A., Plasma Phys. Rep., 2019, vol. 45, p. 459.

    Article  ADS  Google Scholar 

  30. Sultana, S. and Kourakis, I., Plasma Phys. Controlled Fusion, 2011, vol. 53, 045003.

    Article  ADS  Google Scholar 

  31. Chowdhury, N.A., Mannan, A., Hossen, M.R., and Mamun, A.A., Contrib. Plasma Phys., 2018, vol. 58, p. 870.

    Article  ADS  Google Scholar 

  32. Fedele, R., Schamel, H., and Sukla, P.K., Phys. Scr., 2002, vol. 98, p. 18.

    Google Scholar 

  33. Ahmed, N., Mannan, A., Chowdhury, N.A., and Mamun, A.A., Chaos, 2018, vol. 28, 123107.

    Article  MathSciNet  Google Scholar 

  34. Anikiewicz, A., Devine, N., and Akhmediev, N., Phys. Lett. A, 2009, vol. 373, p. 3997.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to dedicate this article to the “Bangladesh Under-19 cricket team” for winning the “Under-19 Cricket World Cup” in 2020. D.M.S. Zaman and N.A. Chowdhury are thankful to the Bangladesh Ministry of Science and Technology for awarding the National Science and Technology (NST) Fellowship. A. Mannan thanks the Alexander von Humboldt Foundation for a Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. M. S. Zaman or N. A. Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, D.M., Mannan, A., Chowdhury, N.A. et al. Dust-Acoustic Rogue Waves in Opposite Polarity Dusty Plasma Featuring Nonextensive Statistics. High Temp 58, 789–794 (2020). https://doi.org/10.1134/S0018151X20360067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20360067

Navigation