Skip to main content
Log in

Effects of Junction Flow on the Free Convection Heat Transfer of a Heated Vertical Plate

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The present study covers results of non-stationary numerical simulation of three-dimensional flow in the junction region of a low aspect ratio circular cylinder entirely immerged in laminar free convection boundary layer developing over a heated vertical plate. To categorize the effects of the cylinder surface temperature on the dynamics behavior of the forming vortical structure, its size and position both upstream and downstream of the cylinder the results, which prove the presence of a complex coherent vortical structure, are analyzed. In particular, the influence of horseshoe vortex system formed upstream of the cylinder on the free convection heat transfer of the heated vertical plate in the junction area is evaluated. Finally, the importance of the forming vortical structure on the heat transfer computation for the junction region is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Chumakov, Y.S., Levchenya, A.M., and Malah, H., St. Petersburg State Polytech. Univ. J. Phys. Math., 2018, vol. 11, no. 1, p. 73.

    Google Scholar 

  2. Anderson, C.D. and Lynch, S.P., Exp. Fluids, 2016, vol. 57, no. 1, p. 5.

    Article  Google Scholar 

  3. Simpson, R.L., Annu. Rev. Fluid Mech., 2001, vol. 33, p. 415.

    Article  ADS  Google Scholar 

  4. Roulund, A., Sumer, B.M., Fredsoe, J., and Michelsen, J., J. Fluid Mech., 2005, vol. 534, p. 351.

    Article  ADS  MathSciNet  Google Scholar 

  5. Unger, J. and Hager, W.H., Exp. Fluids, 2007, vol. 42, no. 1, p. 1.

    Article  Google Scholar 

  6. Seal, C.V. and Smith, C.R., J. Fluid Mech., 1999, vol. 394, p. 193.

    Article  ADS  Google Scholar 

  7. Borello, D. and Hanjalic, K., J. Phys.: Conf. Ser., 2011, vol. 318, no. 4, 042046.

    Google Scholar 

  8. Wei, Q.D., Wang, J.M., Chen, G., Lu, Z.B., and Bi, W.T., J. Visualization, 2008, vol. 11, no. 2, p. 115.

    Article  Google Scholar 

  9. Akilli, H. and Rockwell, D., Phys. Fluids, 2002, vol. 14, no. 9, p. 2957.

    Article  ADS  Google Scholar 

  10. Zhao, M., Cheng, L., and Zang, Z., J. Coastal Eng., 2010, vol. 57, no. 8, p. 709.

    Article  Google Scholar 

  11. Apsilidis, N., Diplas, P., Dancey, C.L., and Bouratsis, P., J. Fluid Mech., 2015, vol. 776, p. 475.

    Article  ADS  Google Scholar 

  12. Kirkil, G. and Constantinescu, G., Phys. Fluids, 2015, vol. 27, no. 7, 075102.

    Article  ADS  Google Scholar 

  13. Delibra, G., Hanjalic, K., Borello, D., and Rispoli, F., Int. J. Heat Fluid Flow, 2010, vol. 31, no. 5, p. 740.

    Article  Google Scholar 

  14. Escauriaza, C. and Sotiropoulos, F., Flow, Turbul. Combust., 2011, vol. 86, p. 231.

    Article  Google Scholar 

  15. Tala, J.V.S., Russeil, S., Bougeard, D., and Harion, J.L., Exp. Therm. Fluid Sci., 2013, vol. 50, p. 45.

    Article  Google Scholar 

  16. Ostanek, J.K. and Thole, K.A., Exp. Fluids, 2012, vol. 53, no. 3, p. 673.

    Article  Google Scholar 

  17. Praisner, T.J. and Smith, C.R., J. Turbomach., 2006, vol. 128, no. 4, p. 755.

    Article  Google Scholar 

  18. Ballio, F., Bettoni, C., and Franzetti, S., J. Fluids Eng., 1998, vol. 120, no. 2, p. 233.

    Article  Google Scholar 

  19. Tiwari, S., Biswas, G., P.L.N., Prasad, and Basu, S., J. Heat Transfer, 2003, vol. 125, no. 3, p. 413.

    Article  Google Scholar 

  20. Sahin, B., Ozturk, N.A., and Gurlek, C., Int. J. Heat Fluid Flow, 2008, vol. 29, no. 1, p. 340.

    Article  Google Scholar 

  21. Tang, H.S., Jones, S.C., and Sotiropoulos, F., J. Comput. Phys., 2003, vol. 191, p. 567.

    Article  ADS  Google Scholar 

  22. Malah, H., Chumakov, Y.S., and Levchenya, A.M., AIP Conf. Proc., 2018, vol. 1959, no. 1, pp. 050018–1.

    Article  Google Scholar 

  23. Tieszen, S., Ooi, A., Durbin, P., and Behnia, M., Proc. Summer Program 1998, Stanford: Stanford University, 1998, p. 287.

    Google Scholar 

  24. ANSYS Academic Research Mechanical, Release 16.2, Help System, Fluent Theory Guide, ANSYS, Inc., 2015.

    Google Scholar 

  25. Borello, D. and Hanjalic, K., J. Phys.: Conf. Ser., 2011, vol. 318, no. 4, 042046.

    Google Scholar 

  26. Escauriaza, C. and Sotiropoulos, F., J. Geophys. Res., 2011, vol. 116, F03007.

    ADS  Google Scholar 

  27. Dubief, Y. and Delcayre, F., J. Turbulence, 2000, vol. 1, no. 1, p. 11.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Malah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malah, H., Chumakov, Y.S. Effects of Junction Flow on the Free Convection Heat Transfer of a Heated Vertical Plate. High Temp 58, 864–874 (2020). https://doi.org/10.1134/S0018151X20360018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20360018

Navigation