Skip to main content
Log in

Investigation of Intensive Cooling of High-Temperature Bodies in Binary Water–Isopropanol Mixture

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The available experimental data on metal-body quenching in subcooled water indicate the presence of extremely intense cooling at the surface temperatures exceeding attainable limiting temperature of the liquid. At present, there is not only a theoretical description but also well-founded qualitative description of the mechanism that makes it possible to remove such heat fluxes in film boiling mode. In experiments on cooling in cryo-liquids, fluorocarbon, ethanol, and isopropanol, such a regime does not occur even at extremely high subcooling. Thus, it seems expedient to perform experiments on the cooling of high-temperature samples in a binary water–isopropanol mixture. For the first time, the boundary concentration of the isopropyl alcohol in the mixture with intensive cooling that occurs upon film boiling is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bromley, L.A., Chem. Eng. Prog., 1950, vol. 46, no. 5, p. 221.

    Google Scholar 

  2. Labuntsov, D.A. and Gomelauri, A.V., Tr.Mosk. Energ. Inst., 1976, no. 310, p. 41.

  3. Frederking, T.H.K. and Clark, J.A., Adv. Cryog. Eng., 1963, vol. 8, p. 501.

    Google Scholar 

  4. Ametistov, E.V., Klimenko, V.V., and Pavlov, Yu.M., Kipenie kriogennykh zhidkostei (Boiling of Cryogenic Liquids), Grigor’ev, V.A., Ed., Moscow: Energoatomizdat, 1995.

  5. Aziz, S., Hewitt, G.F., and Kenning, D.B.R., in Proc. 8th Int. Heat Transfer Conf., San Francisco, 1986, vol. 5, p. 2149.

  6. Zvirin, Y., Hewitt, G.F., and Kenning, D.B.R., Exp. Heat Transfer, 1990, vol. 3, no. 3, p. 185.

    Article  ADS  Google Scholar 

  7. Corell, S.J., Kenning, D.B.R., and Hewitt, G.F., in UK Natl.Conf. on Heat Transfer, Glasgow, 1988, p. 1557.

    Google Scholar 

  8. Yagov, V.V., Zabirov, A.R., Kaban’kov, O.N., and Minko, M.V., Int. J. Heat Mass Transfer, 2017, vol. 110, p. 219.

    Article  Google Scholar 

  9. Suzuki, K., in Proc. of the ECI Int. Conf. on Boiling Heat Transfer, Spoleto, Italy, 2006.

  10. Ando, J., Horiuchi, K., Saiki, T., Kaneko, T., and Ueno, I., Int. J. Heat Mass Transfer, 2016, vol. 101, p. 240.

    Article  Google Scholar 

  11. Sher, I., Harari, R., Reshef, R., and Sher, E., Appl. Therm. Eng., 2016, vol. 36, p. 219.

    Article  Google Scholar 

  12. Gylys, J., Skvorcinskiene, R., Paukstaitis, L., Gylys, M., and Adomavicius, A., Int. J. Heat Mass Transfer, 2016, vol. 95, p. 709.

    Article  Google Scholar 

  13. Ivochkin, Yu.P., Kubrikov, K.G., Kryukov, A.P., and Puzina, Yu.Yu., Abstracts of Papers, Minskii mezhdun. forum po teplomassoobmenu (Minsk Int. Conf. on Heat and Mass Transfer), Minsk: Inst. Teplo- Massoobmena im. A.V. Lykova, 2016, vol. 1, p. 335.

  14. Kryukov, A.P. and Puzina, Yu.Yu., in Tr. V Ross. nats. konf. po teploobmenu (Proc. V Russian Natl. Conf. on Heat Transfer), Moscow: Mosk. Energ. Inst., 2010, vol. 4, p. 100.

  15. Ivochkin, Yu.P., Vavilov, S.N., Zeigarnik, Yu.A., and Kubrikov, K.G., Thermophys. Aeromech., 2012, vol. 19, no. 4, p. 429.

    Article  ADS  Google Scholar 

  16. Zhilin, V.G., Zeigarnik, Yu.A., Ivochkin, Yu.P., Oksman, A.A., and Belov, K.I., High Temp., 2009, no. 6, vol. 47, 856.

    Article  Google Scholar 

  17. Yagov, V.V. and Dedov, A.V., Therm. Eng., 2009, vol. 56, no. 3, p. 201.

    Article  Google Scholar 

  18. Chen, S., Xiao, Y., and Gu, H., Ann. Nucl. Energy, 2019, vol. 131, p. 196.

    Article  Google Scholar 

  19. Lexin, M.A., Yagov, V.V., Pavlov, P.A., and Zabirov, A.R., in Proc. VI Int. Conf. on Transport Phenomena in Multiphase Systems, Ryn, Poland, 2011, p. 301.

  20. Yagov, V.V., in Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications, Boca Raton: CRC, 2013, p. 109.

    Google Scholar 

  21. Yagov, V.V., Zabirov, A.R., and Lexin, M.A., Therm. Eng., 2015, vol. 62, no. 11, p. 833.

    Article  Google Scholar 

  22. Yagov, V.V., Lexin, M.A., Zabirov, A.R., and Kaban’kov, O.N., Int. J. Heat Mass Transfer, 2016, vol. 100, p. 908.

    Article  Google Scholar 

  23. Yagov, V.V., Zabirov, A.R., Kanin, P.K., and Denisov, M.A., J. Eng. Phys. Thermophys., 2017, vol. 90, no. 2, p. 266.

    Article  Google Scholar 

  24. Zabirov, A.R., Yagov, V.V., Kaban’kov, O.N., Lexin, M.A., and Kanin, P.K., J. Eng. Phys. Thermophys., 2016, vol. 89, p. 1466.

    Article  Google Scholar 

  25. Yagov, V.V., Lexin, M.A., Zabirov, A.R., and Denisov, M.A., Int. J. Heat Mass Transfer, 2016, vol. 100, p. 917.

    Google Scholar 

  26. Yagov, V.V., Therm. Eng., 2019, vol. 66, no. 11, p. 779.

    Article  Google Scholar 

  27. Zabirov, A.R., Yagov, V.V., and Kanin, P.K., J. Phys.: Conf. Ser., 2017, vol. 891, 012014.

    Google Scholar 

  28. Zabirov, A.R., Kanin, P.K., Vinogradov, M.M., Sliva, A.P., Dedov, A.V., Fedorovich, S.D., and Yagov, V.V., Mater. Today: Proc., 2018, vol. 5, no. 12, p. 26171.

    Google Scholar 

  29. Kanin, P.K., Ryazantsev, V.A., Lexin, M.A., Zabirov, A.R., and Yagov, V.V., J. Phys.: Conf. Ser., 2018, vol. 980, 012029.

    Google Scholar 

  30. Zabirov, A.R., Kanin, P.K., Vinogradov, M.M., and Sharafutdinov, A.M., J. Phys.: Conf. Ser., 2018, vol. 1128, 012015.

    Google Scholar 

  31. Zabirov, A.R., Yagov, V.V., Lexin, M.A., and Kanin, P.K., J. Phys.: Conf. Ser., 2018, vol. 1128, no. 1.

  32. Yagov, V.V., Zabirov, A.R., Kanin, P.K., and Lexin, M.A., in Proc. Int. Heat Transfer Conf., Begel House, 2018, p. 713.

  33. Yagov, V.V., Zabirov, A.R., and Kanin, P.K., Int. J. Heat Mass Transfer, 2018, vol. 126, p. 823.

    Article  Google Scholar 

  34. Dedov, A.V., Zabirov, A.R., Sliva, A.P., Fedorovich, S.D., and Yagov, V.V., High Temp., 2019, vol. 57, no. 1, p. 63.

    Article  Google Scholar 

  35. Zabirov, A.R., Smirnova, A.A., Feofilaktova, Yu.M., Shevchenko, S.A., and Yashnikov, D.A., Prog. Nucl. Energy, 2020, vol. 118, 103061.

    Article  Google Scholar 

  36. Pavlenko, A.N., Tsoi, A.N., Surtaev, A.S., Kuznetsov, D.V., and Serdyukov, V.S., High Temp., 2016, vol. 54, no. 3, p. 370.

    Article  Google Scholar 

  37. Pavlenko, A.N., Tsoi, A.N., Surtaev, A.S., Kuznetsov, D.V., Kalita, V.I., Komlev, D.I., Ivannikov, A.Yu., and Radyuk, A.A., High Temp., 2018, vol. 56, no. 3, p. 404.

    Article  Google Scholar 

  38. Pavlenko, A.N. and Kuznetsov, D.V., J. Phys.: Conf. Ser., 2018, vol. 1105, 012053.

    Google Scholar 

  39. Starodubtseva, I.P., Pavlenko, A.N., and Surtaev, A.S., Int. J. Therm. Sci., 2017, vol. 114, no. 4, p. 196.

    Article  Google Scholar 

  40. Kenning, D.B.R., Int. J. Heat Fluid Flow, 2004, vol. 25, no. 2, p. 209.

    Article  Google Scholar 

  41. Beck, M., Neise, C., Ahrenberg, M., Schick, C., Kragl, U., and Kessler, O., Int. J. Microstruct. Mater. Prop., 2016, vol. 11, no. 5, p. 359.

    Google Scholar 

  42. Jones, P.R., Chuang, C., Sun, T., Zhao, T.Y., Fezzaa, K., Takase, J.C., Singh, D., and Patankar, N.A., Sci. Rep., 2019, vol. 9, no. 1, p. 1598.

    Article  ADS  Google Scholar 

  43. Seung, S.W., Seong, M.K., and Seong, D.P., Int. J. Heat Mass Transfer, 2013, vol. 60, p. 105.

    Article  Google Scholar 

  44. Kim, H., DeWitt, G., McKrell, T., Buongiorno, J., and Hu, L., Int. J. Multiphase Flow, 2009, vol. 35, no. 5, p. 427.

    Article  Google Scholar 

  45. Furuya, M. and Arai, T., in Proc. 16th Int. Heat Transfer Conf. IHTC-16, Beijing, 2018, art. ID 23614.

  46. Zabirov, A.R., Yagov, V.V., Kanin, P.K., and Lexin, M.A., in Proc. 2nd Pacific Rim Thermal Engineering Conf., Maui, Hawaii, 2019, p. 1.

Download references

Funding

The work was performed at the V.A. Kirillin Department of Engineering Thermophysics, MPEI NRU, and was supported by the Russian Science Foundation, project no. 17-79-20402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Zabirov.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lexin, M.A., Yagov, V.V., Zabirov, A.R. et al. Investigation of Intensive Cooling of High-Temperature Bodies in Binary Water–Isopropanol Mixture. High Temp 58, 369–376 (2020). https://doi.org/10.1134/S0018151X20030116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20030116

Navigation