Nonlinear Dynamics in Strongly Coupled Quantum Plasma

Abstract

The properties of cylindrical and spherical modified ion-acoustic waves in a strongly coupled plasma (containing strongly correlated non-relativistic ions, weakly correlated relativistic (both non-relativistic and ultra-relativistic) electron and positron fluids, and positively charged static heavy ions) are investigated theoretically. The restoring force is provided by the degenerate pressure of the electron and positron fluids, whereas the inertia is provided by the mass of ions. The positively charged static heavy ions participate only in maintaining the quasi-neutrality condition at equilibrium. By using reductive perturbation method, we have derived modified Burgers and Korteweg–de Vries equations. Their shock and solitary wave solutions are also numerically analyzed to understand the localized electrostatic disturbances. The basic features of modified ion-acoustic shock and solitary waves are found to be significantly modified by the effects of degenerate pressure of electrons, positrons, and ion fluids, their number densities, and various charge states of heavy ions. It is also observed that the amplitude of these shock and solitary profiles are maximum for spherical geometry, intermediate for cylindrical geometry, and minimum for planar geometry. The present analysis can be helpful for understanding different degenerate and relativistic phenomena in dense astrophysical environments as well as laboratory plasma systems.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Tandberg-Hansen, E. and Emslie, A.G., The Physics of Solar Flares, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  2. 2

    Begelman, M.C., Blanford, R.D., and Rees, M.J., Rev. Mod. Phys., 1984, vol. 56, p. 255.

    ADS  Article  Google Scholar 

  3. 3

    Tribeche, M., Aoutou, K., Younsi, S., and Amour, R., Phys. Plasmas, 2009, vol. 16, 072 103.

    Article  Google Scholar 

  4. 4

    Greaves, R.G. and Surko, C.M., Phys. Plasmas, 1997, no. 4, p. 1528.

  5. 5

    Helander, P. and Ward, D.J., Phys. Rev. Lett., 2003, vol. 90, p. 135 004.

    Article  Google Scholar 

  6. 6

    Ali, S., Moslem, W.M., Shukla, P.K., and Schlickeiser, R., Phys. Plasmas, 2007, vol. 14, 082 307.

    Article  Google Scholar 

  7. 7

    Moslem, W.M., Kourakis, I., Shukla, P.K., and Schlickeiser, R., Phys. Plasmas, 2007, vol. 14, 102 901.

    Article  Google Scholar 

  8. 8

    Beloborodov, A.M. and Thompson, C., Astrophys. J., 2007, vol. 657, p. 967.

    ADS  Article  Google Scholar 

  9. 9

    Mamun, A.A. and Shukla, P.K., Phys. Lett. A, 2010, vol. 324, p. 4238.

    ADS  Article  Google Scholar 

  10. 10

    Hossen, M.R., Nahar, L., Sultana, S., and Mamun, A.A., High Energy Density Phys., 2014, vol. 13, p. 13.

    ADS  Article  Google Scholar 

  11. 11

    Hossen, M.R., Nahar, L., Sultana, S., and Mamun, A.A., Astrophys. Space Sci., 2014, vol. 353, p. 123.

    ADS  Article  Google Scholar 

  12. 12

    Woosley, S.E. and Baron, E., Astrophys. J., 1992, vol. 391, p. 228.

    ADS  Article  Google Scholar 

  13. 13

    Koester, D. and Chanmugam, G., Rep. Prog. Phys., 1990, vol. 53, p. 837.

    ADS  Article  Google Scholar 

  14. 14

    Shukla, P.K., Mamun, A.A. and Mendis, D.A., Phys. Rev. E, 2011, vol. 84, 026 405.

    Article  Google Scholar 

  15. 15

    Brewer, L.R., Prestage, J.D., Bollinger, J.J., and Wineland, D.J., Astrophys. Space Sci., 1987, vol. 154, p. 53.

    Google Scholar 

  16. 16

    Kumar, A., Sivakumaran, V., Ashwin, J., Ganesh, R., and Joshi, H.C., Phys. Plasmas, 2013, vol. 20, 082 708.

    Article  Google Scholar 

  17. 17

    Fortov, V., Iakubov, I., and Khrapak, A., Physics of Strongly Coupled Plasma, USA: Oxford University Press, 2006.

    MATH  Book  Google Scholar 

  18. 18

    Kraeft, W.D., Plasma Phys. Control. Fusion, 2007, vol. 49, p. 1111.

    Article  Google Scholar 

  19. 19

    van Albada, G.B., Astrophys. J., 1947, vol. 105, p. 393.

    ADS  Article  Google Scholar 

  20. 20

    El-Taibany, W.F. and Wadati, M., Phys. Plasmas, 2007, vol. 14, 103 703.

    Article  Google Scholar 

  21. 21

    Chandrasekhar, S., Astrophys. J., 1931, vol. 74, p. 81.

    ADS  Article  Google Scholar 

  22. 22

    Chandrasekhar, S., Phi. Mag., 1931, vol. 11, p. 592.

    Article  Google Scholar 

  23. 23

    Mamun, A.A. and Shukla, P.K., Phys. Plasmas, 2010, vol. 17, 104 504.

    Article  Google Scholar 

  24. 24

    Shapiro, S.L. and Teukolsky, A.A., Black Holes, White Dwarfs, and Neutron Stars, New York: John Wiley and Sons, 1983.

    Book  Google Scholar 

  25. 25

    Garcia-Berro, E., Torres, S., Althaus, L.G., and Bertolami, M.M.M., Nature, 2010, vol. 465, p. 194.

    ADS  Article  Google Scholar 

  26. 26

    Hosen, B., Shah, M.G., Hossen, M.R., and Mamun, A.A., Euro. Phys. J. Plus, 2016, vol. 131, p. 81.

    Article  Google Scholar 

  27. 27

    Hosen, B., Shah, M.G., Hossen, M.R., and Mamun, A.A., IEEE Trans. Plasma Sci., 2017, vol. 45, p. 3316.

    ADS  Article  Google Scholar 

  28. 28

    Shah, A. and Saeed, R., Phys. Lett. A, 2009, vol. 373, p. 4164.

    ADS  Article  Google Scholar 

  29. 29

    Roy, K., Misra, A.P., and Chatterjee, P., Phys. Plasmas, 2008, vol. 15, 032 310.

    Article  Google Scholar 

  30. 30

    Ata-ur-Rahman, Ali, S., Mirza, Arshad M., and Qamar, A., Phys. Plasmas, 2013, vol. 20, 042 305.

  31. 31

    Hossen, M.R., Ema, S.A., and Mamun, A.A., Commun. Theor. Phys., 2014, vol. 62, p. 888.

    Article  Google Scholar 

  32. 32

    Masood, W., Mirza, Arshad M., and Hanif, M., Phys. Plasmas, 2008, vol. 15, 072 106.

    Article  Google Scholar 

  33. 33

    Hossen, M.R., Nahar, L., and Mamun, A.A., Phys. Scr., 2014, vol. 89, p. 105 603.

    Article  Google Scholar 

  34. 34

    Hossen, M.R., Nahar, L., and Mamun, A.A., Braz. J. Phys., 2014, vol. 44, p. 638.

    ADS  Article  Google Scholar 

  35. 35

    Hossen, M.R., Nahar, L., and Mamun, A.A., J. Astrophys., 2014, vol. 2014, 653 065, https://doi.org/10.1155/2014/653065

    Article  Google Scholar 

  36. 36

    Hossen, M.R., Nonlinear Excitations in Degenerate Quantum Plasmas, Germany: LAP-Lambert Academic Publishing Company, 2014.

    Google Scholar 

  37. 37

    Pakzad, H.R., Can. J. Phys. 2011, vol. 89, p. 961.

    ADS  Article  Google Scholar 

  38. 38

    Pakzad, H.R. and Tribeche, M., J. Fusion Energy, 2013, vol. 32, p. 171.

    ADS  Article  Google Scholar 

  39. 39

    Hossen, M.R. and Mamun, A.A., Braz. J. Phys., 2014, vol. 44, p. 673.

    ADS  Article  Google Scholar 

  40. 40

    Hossen, M.R., Nahar, L., and Mamun, A.A., J. Korean Phys. Soc., 2014, vol. 65, p. 1863.

    ADS  Article  Google Scholar 

  41. 41

    Hossen, M.R., and Mamun, A.A., Plasma Sci. Technol., 2015, vol. 17, p. 177.

    ADS  Article  Google Scholar 

  42. 42

    Hossen, M.R. and Mamun, A.A., J. Korean Phys. Soc., 2014, vol. 65, p. 2045.

    ADS  Article  Google Scholar 

  43. 43

    Hossen, M.R. and Mamun, A.A., Braz. J. Phys., 2015, vol. 45, p. 200.

    ADS  Article  Google Scholar 

  44. 44

    Hosen, B., Shah, M.G., Hossen, M.R., and Mamun, A.A., Euro. Phys. J. Plus, 2016, vol. 131, p. 81.

    Article  Google Scholar 

  45. 45

    Shah, M.G., Hossen, M.R., and Mamun, A.A., Braz. J. Phys., 2015, vol. 45, p. 219.

    ADS  Article  Google Scholar 

  46. 46

    Shah, M.G., Hossen, M.R., and Mamun, A.A., J. Plasma Phys., 2015, vol. 81, 905 810 517.

    Article  Google Scholar 

  47. 47

    Shah, M.G., Hossen, M.R., and Mamun, A.A., J. Korean Phys. Soc., 2015, vol. 66, p. 1239.

    ADS  Article  Google Scholar 

  48. 48

    Shah, M.G., Hossen, M.R., and Mamun, A.A., Chinese Phys. Lett., 2015, vol. 32, p. 85 203.

    Article  Google Scholar 

  49. 49

    Ema, S.A., Hossen, M.R., and Mamun, A.A., Contrib. Plasma Phys., 2015, vol. 55, p. 551.

    ADS  Article  Google Scholar 

  50. 50

    Ichimaru, S., Iyetomi, H., and Tanaka, S., Phys. Rep., 1987, vol. 149, p. 91.

    ADS  Article  Google Scholar 

  51. 51

    Hossen, M.R., Ema, S.A., and Mamun, A.A., Plasma Phys. Rep., 2017, vol. 43, p. 1189.

    ADS  Article  Google Scholar 

  52. 52

    Ichimaru, S. and Tanaka, S., Phys. Rev. Lett., 1986, vol. 56, p. 2815.

    ADS  Article  Google Scholar 

  53. 53

    Slattery, W.L., Doolen, G.D., and Dewitt, H.E., Phys. Rev. A, 1980, vol. 21, p. 2087.

    ADS  Article  Google Scholar 

  54. 54

    Maxon, S. and Viecelli, J., Phys. Rev. Lett., 1974, vol. 32, p. 4.

    ADS  Article  Google Scholar 

  55. 55

    Masood, W. and Eliasson, B., Phys. Plasmas, 2011, vol. 18, 034 503.

    Article  Google Scholar 

  56. 56

    Ata-ur-Rahman, Mustaq, A., Ali, S., and Qamar, A., Commun. Theor. Phys., 2013, vol. 59, p. 479.

  57. 57

    Ferro, F., Lavagno, A., and Quarati, P., Eur. Phys. J. A, 2004, vol. 21, p. 529.

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

M.R. Hossen and S.A. Ema gratefully acknowledge Ministry of National Science and Technology, Bangladesh for an M.S. research fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. R. Hossen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossen, M.R., Ema, S.A. & Mamun, A.A. Nonlinear Dynamics in Strongly Coupled Quantum Plasma. High Temp 57, 813–820 (2019). https://doi.org/10.1134/S0018151X19070010

Download citation