Skip to main content
Log in

Numerical Study of the Influence of the Breakup of Dispersed Phase on the Distribution of a Shock Wave from Pure Gas into Aerosol

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

In this paper, we compare the results of numerical calculations of the passage of a direct shock wave from pure gas into aerosol obtained with and without the effects of droplet breakup. The effect of the fragmentation of aerosol droplets on the profile and velocity of a compression wave propagating in a two-phase medium is determined. The droplet sizes at which the breakup of dispersed inclusions affects the process of the movement of a shock wave along aerosol are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Nigmatulin, R.I., Dinamika mnogofaznykh sred (The Dynamics of Multiphase Media), Moscow: Nauka, 1987, part 1.

  2. Kutushev, A.G., Matematicheskoe modelirovanie volnovykh protsessov v aerodispersnykh i poroshkoobraznykh sredakh (Mathematical Simulation of Wave Processes in Aerodispersed and Powdery Msedia), St. Petersburg: Nedra, 2003.

  3. Yanenko, N.N., Soloukhin, R.I., Papyrin, A.N., and Fomin, V.M., Sverkhzvukovye dvukhfaznye techeniya v usloviyakh skorostnoi neravnovesnosti chastits (Supersonic Two-Phase Flows under Conditions of High-Speed Particle Nonequilibrium), Novosibirsk: Nauka, 1980.

  4. Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.

    Article  Google Scholar 

  5. Kratova, Yu.V., Fedorov, A.V., and Khmel’, T.A., Combust., Explos. Shock Waves (Engl. Transl.), 2009, vol. 45, no. 5, p. 591.

  6. Verevkin, A.A. and Tsirkunov, Yu.M., J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 5, p. 789.

    Article  ADS  Google Scholar 

  7. Bayanov, R.I. and Tukmakov, A.L., Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 2015, no. 1, p. 19.

  8. Nigmatulin, R.I., Gubaidullin, D.A., and Tukma-kov, D.A., Dokl. Phys., 2016, vol. 61, no. 2, p. 70.

    Article  ADS  Google Scholar 

  9. Gubaidullin, D.A. and Tukmakov, D.A., Mat. Model., 2014, vol. 26, no. 10, p. 109.

    Google Scholar 

  10. Gel’fand, B.E., Sil’nikov, M.V., and Takayama, K., Razrushenie kapel’ zhidkosti (Destruction of Liquid Droplets), St. Petersburg: St. Petersburg, Politekh. Univ., 2008.

  11. Varaksin, A.Yu., High Temp., 2017, vol. 55, no. 2, p. 286.

    Article  Google Scholar 

  12. Pilch, M. and Erdman, C.A., Int. J. Multiphase Flow, 1987, vol. 13, p. 741.

    Article  Google Scholar 

  13. Ranger, A.A., Acta Astronaut., 1972, vol. 17, nos 4/5, p. 675.

    Google Scholar 

  14. Boiko, V.M. and Poplavskii, S.V., Vestn. Nizhegorodsk. Univ. im. N.I. Lobachevskogo, 2011, no. 4, p. 2030.

  15. Arefyev, K.Yu. and Voronetsky, A.V., Thermophys. Aeromech., 2015, vol. 22, no. 5, p. 585.

    Article  ADS  Google Scholar 

  16. Fletcher, C.A., Computation Techniques for Fluid Dynamics, Berlin: Springer, 1988.

    Book  Google Scholar 

  17. Muzafarov, I.F. and Utyuzhnikov, S.V., Mat. Model., 1993, vol. 5, no. 3, p. 74.

    MathSciNet  Google Scholar 

  18. Kulikov, V.N., Lapidus, A.I., Tivanov, G.G., and Shamshev, K.N., Fluid Dyn., 1989, vol. 24, no. 2, p. 329.

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 1819-01-00442.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Gubaidullin or D. A. Tukmakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Tukmakov, D.A. Numerical Study of the Influence of the Breakup of Dispersed Phase on the Distribution of a Shock Wave from Pure Gas into Aerosol. High Temp 57, 899–903 (2019). https://doi.org/10.1134/S0018151X19060099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19060099

Navigation