Skip to main content
Log in

Effect of Temperature on the Conformation Changes of Structural and Thermophysical Characteristics in Composite Cellulose-Acetate Films

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The effect of temperature on the conformation changes of the structural and the thermophysical characteristics in the UAM-50, UAM-100, and MGA-95 composite films of cellulose acetate are studied. An interphase layer appears at the phase interface in the UAM-50 and the UAM-100 samples according to the data of differential scanning calorimetry. An exothermic effect appears in the calorimetry data curves for water-saturated samples in the temperature range of ΔT = 125–226°C with ΔH = 20.7 kJ/kg for the UAM-50 and 27.95 kJ/kg for the UAM-100; this indicates hydration of the polar groups of cellulose acetate and polyamide in the interphase layer of the composite films. When composite films in the air-dried and the water-saturated samples were studied with differential scanning, there was a redistribution of the ratio between the quantities of perfect crystalline structures in crystallites with different melting enthalpies. The melting enthalpy decreases from 6.06 to 0.99 kJ/kg for the MGA-95 low-temperature phase, from 1.99 to 1.72 kJ/kg for the high-temperature phase; from 3.04 to 1.38 kJ/kg for the UAM-50 low-temperature phase, from 8.12 to 1.76 kJ/kg for the high-temperature phase; from 4.99 to 1.5 kJ/kg for the UAM-100 low-temperature phase, and from 2.33 to 0.77 kJ/kg for the high-temperature phase. The total melting enthalpy of the endothermic peaks also decreases for all three samples; this is an indication of decreased crystallinity in the water-saturated samples of the composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chinnov, E.A., High Temp., 2016, vol. 54, no. 3, p. 457.

    Article  Google Scholar 

  2. Smagin, V.N., Zhurov, N.N., Yaroshevsky, D.A., and Yevdokimov, O.Y., Desalination, 1983, vol. 46, nos. 1–3, p. 253.

    Article  Google Scholar 

  3. Onuki, K., Hwang, G.J., and Arifal Shimizu, S., J. Membr. Sci., 2001, vol. 192, nos. 1–2, p. 193.

    Article  Google Scholar 

  4. Pourcelly, G., Nikonenko, V.V., Pismenskaya, N.D., and Yaroslavtsev, A.B., in Ionic Interactions in Natural and Synthetic Macromolecules, Hoboken, NNJ: Wiley, 2012, p. 761.

    Chapter  Google Scholar 

  5. Pis’menskaya, N.D., Nikonenko, V.V., Mel’nik, N.A., Purseli, Zh., and Larshe, K., Russ. J. Elektrochem., 2012, vol. 48, no. 6, p. 610.

    Article  Google Scholar 

  6. Polyanskii, N.G. and Tulupov, P.E., Russ. Chem. Rev., 1971, vol. 40, no. 12, p. 1030.

    Article  ADS  Google Scholar 

  7. Tulupov, P.E., Stoikost’ ionoobmennykh materialov (Durability of Ion Exchange Materials), Moscow: Khimiya, 1984.

  8. Kotov, V.V., Netesova, G.A., Peregonchaya, O.V., and Kuznetsova, O.V., Sorbtsionnye Khromatogr.Protsessy, 2010, vol. 10, no. 2, p. 208.

    Google Scholar 

  9. Khabibullin, I.L., Khamitov, A.T., and Nazmutdinov, F.F., High Temp., 2014, vol. 52, no. 5, p. 697.

    Article  Google Scholar 

  10. Klinov, A.V., Anashkin, I.P., and Akberov, R.R., High Temp., 2018, vol. 56, no. 1, p. 70.

    Article  Google Scholar 

  11. Vasil’eva, V.I., Pismenskaya, N.D., Akberova, E.M., and Nebavskaya, K.A., Russ. J. Phys. Chem. A, 2014, vol. 88, no. 8, p. 1293.

    Article  Google Scholar 

  12. Bushman, A.V., Lomonosov, I.V., Fortov, V.E., and Khishchenko, K.V., Khim. Fiz., 1994, vol. 13, no. 1, p. 64.

    Google Scholar 

  13. Bushman, A.V., Lomonosov, I.V., Fortov, V.E., and Khishchenko, K.V., Khim. Fiz., 1994, vol. 13, no. 5, p. 97.

    Google Scholar 

  14. Xiaoping, G., Crystallization of Polyamide 66 Copolymers at High Supercoolings, PhD Thesis, Knoxville, TN: Univ. Tennessee, 2004.

  15. Savitskaya, T.A, Shibailo, T.N., Selevich, K.A., and Makarevich, S.E., Vestn. Belarus. Gos. Univ., Ser. 2, 2008, no. 3, p. 38.

  16. Novikov, S.N., Ermolaeva, A.I., Timoshenkov, S.P., Korobova, N.E., and Goryunova, E.P., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 6, p. 1244.

    Article  Google Scholar 

  17. Ugrozov, V.V., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 3, p. 477.

    Article  Google Scholar 

  18. Meier, M.M., Kanis, L.A., and Soldi, V., Int. J. Pharm., 2004, vol. 278, no. 1, p. 99.

    Article  Google Scholar 

  19. Bernal-Ballén, A., Kuritka, I., and Saha, P., Int. J. Polym. Sci., 2016, vol. 2016, 3 172 545.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lazarev.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M., Kovalev, S.V. et al. Effect of Temperature on the Conformation Changes of Structural and Thermophysical Characteristics in Composite Cellulose-Acetate Films. High Temp 57, 641–647 (2019). https://doi.org/10.1134/S0018151X19050092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19050092

Navigation