Skip to main content
Log in

Collision of Particles and Droplets in Turbulent Two-Phase Flows

  • REVIEWS
  • Published:
High Temperature Aims and scope

Abstract

The problems and features of an accounting of the collisions of particles (droplets) in turbulent two-phase flows are considered. The developed approaches for the determination of collision nuclei of monodisperse and bidisperse particles (droplets) in uniform isotropic turbulence, as well as under the combined action of turbulence, averaged velocity gradient, and gravity, are described. The results of experimental and theoretical calculations of the effect of collisions on the characteristics of two-phase jet flows and flows in channels are presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Nalivkin, D.V., Uragany, buri i smerchi. Geograficheskie osobennosti i geologicheskaya deyatel’nost’ (Hurricanes, Storms, and Tornadoes: Geographical Features and Geological Activity), Leningrad: Nauka, 1969.

  2. Khrgian, A.Kh., Fizika atmosfery (Atmospheric Physics), Leningrad: Gidrometeoizdat, 1978, vol. 2.

  3. Alekseenko, S.V., Kuibin, P.A., and Okulov, V.L., Vvedenie v teoriyu kontsentrirovannykh vikhrei (Introduction to the Theory of Concentrated Vortices), Izhevsk: Inst. Komp’yut. Issled., 2005.

  4. Bautin, S.P., Tornado i sila Koriolisa (Tornado and Coriolis Force), Novosibirsk: Nauka, 2008.

  5. Arsen’ev, S.A., Babkin, V.A., Gubar’, A.Yu., and Nikolaevskii, V.N., Teoriya mezomasshtabnoi turbulentnosti. Vikhri atmosfery i okeana (Theory of Mesoscale Turbulence: Vortices of the Atmosphere and Ocean), Izhevsk: Inst. Komp’yut. Issled., 2010.

  6. Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., Tornado, New York: Begell House, 2015.

    Google Scholar 

  7. Varaksin, A.Yu., High Temp., 2016, vol. 54, no. 3, p. 409.

    Article  Google Scholar 

  8. Varaksin, A.Yu., High Temp., 2017, vol. 55, no. 2, p. 286.

    Article  Google Scholar 

  9. Owen, P.R., J. Fluid Mech., 1969, vol. 39, p. 407.

    Article  ADS  Google Scholar 

  10. Boothroyd, R.G., Flowing Gas–Solids Suspensions, London: Chapman and Hall, 1971.

    Google Scholar 

  11. Deich, M.E. and Filippov, G.A., Gazodinamika dvukhfaznykh sred (Gas Dynamics of Two-Phase Media), Moscow: Energoizdat, 1981.

  12. Perel’man, R.G. and Pryakhin, V.V., Eroziya elementov parovykh turbin (Erosion of Steam Turbine Elements), Moscow: Energoatomizdat, 1986.

  13. Borisov, Yu.S. and Borisova, A.L., Plazmennye poroshkovye pokrytiya (Plasma Powder Coatings), Kiev: Tekhnika, 1986.

  14. Alkhimov, A.P., Klinkov, S.V., Kosarev, V.F., and Fomin, V.M., Kholodnoe gazodinamicheskoe napylenie. Teoriya i praktika (Cold Gas Dynamic Spraying: Theory and Practice), Moscow: Fizmatlit, 2010.

  15. Varaksin, A.Yu., High Temp., 2015, vol. 53, no. 3, p. 423.

    Article  Google Scholar 

  16. Varaksin, A.Yu., High Temp., 2018, vol. 56, no. 2, p. 275.

    Article  Google Scholar 

  17. Varaksin, A.Yu., Stolknoveniya v potokakh gaza s tverdymi chastitsami (Collisions in Gas Flows with Solid Particles), Moscow: Fizmatlit, 2008.

  18. Tanaka, T. and Tsuji, Y., in Proc. 4th Int. Symp. on Gas-Solid Flows, Am. Soc. Mech. Eng., Fluid Eng. Div., 1991, vol. 121, p. 123.

  19. Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., and Tsuji, Y., J. Fluid Mech., 2001, vol. 442, p. 303.

    Article  ADS  Google Scholar 

  20. Williams, J.J.E. and Crane, R.I., Int. J. Multiphase Flow, 1983, vol. 9, no. 4, p. 421.

    Article  Google Scholar 

  21. Yuu, S., AIChE J., 1984, vol. 30, p. 802.

    Article  Google Scholar 

  22. Kruis, F.E. and Kusters, K.A., J. Aerosol Sci., 1996, vol. 27, no. Suppl. 1, p. 263.

  23. Derevich, I.V., Fluid. Dyn., 1996, vol. 31, no. 2, p. 249.

    Article  ADS  Google Scholar 

  24. Zaichik, L.I. and Alipchenkov, V.M., Statisticheskie modeli dvizheniya chastits v turbulentnoi zhidkosti (Statistical Models of Particle Motion in a Turbulent Fluid), Moscow: Fizmatlit, 2007.

  25. Saffman, P.G. and Turner, J.S., J. Fluid Mech., 1956, vol. 1, p. 16.

    Article  ADS  Google Scholar 

  26. Wang, L.-P., Wexler, A.S., and Zhou, Y., Phys. Fluids, 1998, vol. 10, p. 266.

    Article  ADS  Google Scholar 

  27. Wang, L.-P., Wexler, A.S., and Zhou, Y., J. Fluid Mech., 2000, vol. 415, p. 117.

    Article  ADS  MathSciNet  Google Scholar 

  28. Chapman, S. and Cowling, T.G., The Mathematical Theory of Non-Uniform Gases, Cambridge: Cambridge Univ. Press, 1970.

    MATH  Google Scholar 

  29. Lun, C.K.K., Savage, S.B., Jeffrey, D.J., and Chepurniy, N., J. Fluid Mech., 1984, vol. 140, p. 223.

    Article  ADS  Google Scholar 

  30. Ding, J. and Gidaspow, D., AIChE J., 1990, vol. 36, no. 4, p. 523.

    Article  Google Scholar 

  31. Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., High Temp., 2010, vol. 48, no. 4, p. 588.

    Article  Google Scholar 

  32. Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., High Temp., 2010, vol. 48, no. 6, p. 918.

    Article  Google Scholar 

  33. Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., High Temp., 2012, vol. 50, no. 4, p. 496.

    Article  Google Scholar 

  34. Smoluchowski, M.V., Z. Phys. Chem, 1917, vol. 92, p. 129.

    Google Scholar 

  35. Guichard, R., Taniere, A., Belut, E., and Rimbert, N., Int. J. Multiphase Flow, 2014, vol. 64, no. 9, p. 73.

    Article  MathSciNet  Google Scholar 

  36. Bruggeman, C. and Sarantsev, A., Bernoulli, 2018, vol. 24, no. 1, p. 156.

    Article  MathSciNet  Google Scholar 

  37. Xie, M.L. and Yu, M.Z., Int. J. Heat Mass Transfer, 2018, vol. 122, p. 922.

    Article  Google Scholar 

  38. Protasov, M.V. and Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 4, p. 500.

    Article  Google Scholar 

  39. Alexander, C.M. and Goodisman, J., J. Colloid Interface Sci., 2014, vol. 418, p. 103.

    Article  ADS  Google Scholar 

  40. Arkhipov, V. and Usanina, A., EPJ Web of Conf., 2015, vol. 82, 01017.

  41. Chen, X.L., Feng, Y., Zhong, W.Q., Sun, B.B., and Tao, F., Powder Technol., 2018, vol. 323, p. 284.

    Article  Google Scholar 

  42. Muchnik, V.M., Fizika grozy (Thunderstorm Physics), Leningrad: Gidrometeoizdat, 1974.

  43. Vaulina, O.S., Petrov, O.F., Fortov, V.E., Khrapak, A.G., and Khrapak, S.A., Pylevaya plazma: eksperiment i teoriya (Dust Plasma: Experiment and Theory), Moscow: Fizmatlit, 2009.

  44. Complex and Dusty Plasmas: From Laboratory to Space, Fortov, V.E. and Morfill, G.E., Eds., Boca Raton, FL: CRC, 2010.

    Google Scholar 

  45. Korshunov, O.V., Chinnov, V.F., and Kavyrshin, D.I., High Temp., 2017, vol. 55, no. 2, p. 183.

    Article  Google Scholar 

  46. Messerle, A.V., Messerle, V.E., and Ustimenko, A.B., High Temp., 2017, vol. 55, no. 3, p. 352.

    Article  Google Scholar 

  47. Tukmakov, A.L. and Tukmakov, D.A., High Temp., 2017, vol. 55, no. 4, p. 491.

    Article  Google Scholar 

  48. Kostanovskiy, A.V. and Kostanovskaya, M.E., High Temp., 2017, vol. 55, no. 6, p. 866.

    Article  Google Scholar 

  49. Zheng, X. and Silber-Li, Z., Appl. Phys. Lett., 2009, vol. 95, no. 12, 124105.

    Article  ADS  Google Scholar 

  50. Gorchakov, G.I., Karpov, A.V., Kopeikin, V.M., Sokolov, A.V., and Buntov, D.V., Dokl. Earth Sci., 2016, vol. 467, no. 1, p. 314.

    Article  ADS  Google Scholar 

  51. Breault, R.W., Roman, S.L., Monazam, E., and Stewart, K.T., Powder Technol., 2016, vol. 299, p. 119.

    Article  Google Scholar 

  52. Squires, K.D. and Eaton, J.K., Phys. Fluids A, 1991, vol. 3, no. 5, p. 1169.

    Article  ADS  Google Scholar 

  53. Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.

    Article  Google Scholar 

  54. Abrahamson, J., Chem. Eng. Sci., 1975, vol. 30, p. 1371.

    Article  Google Scholar 

  55. Lavieville, J., Deutsch, E., and Simonin, O., in Proc. 6th Int. Symp. on Gas-Particle Flows, Am. Soc. Mech. Eng., Fluid Eng. Div., 1996, vol. 228, p. 347.

  56. Lavieville, J., Simonin, O., Berlemont, A., and Chang, Z., in Proc. 7th Int. Symp. on Gas-Particle Flows, Am. Soc. Mech. Eng., Fluid Eng. Div., 1997, FEDSM97-3623.

  57. Zaichik, L.I., Simonin, O., and Alipchenkov, V.M., Phys. Fluids, 2003, vol. 15, no. 10, p. 2995.

    Article  ADS  MathSciNet  Google Scholar 

  58. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical Fluid Mechanics), Moscow: Nauka, 1967, part 2.

  59. Alipchenkov, V.M. and Zaichik, L.I., Fluid Dyn., 2001, vol. 36, no. 4, p. 608.

    Article  Google Scholar 

  60. Fede, P. and Simonin, O., in Proc. 4th ASME/JSME Joint Fluids Eng. Conf., 2003, FEDSM2003-45735.

  61. Zaichik, L.I., Simonin, O., and Alipchenkov, V.M., High Temp., 2005, vol. 43, no. 3, p. 404.

    Article  Google Scholar 

  62. Gourdel, C., Simonin, O., and Brunier, E., in Proc. 6th Int. Conf. on Circulating Fluidized Beds, 1999, p. 205.

  63. Dodin, Z. and Elperin, T., Phys. Fluids, 2002, vol. 14, no. 8, p. 2921.

    Article  ADS  Google Scholar 

  64. Sundaram, S. and Collins, L.R., J. Comput. Phys., 1996, vol. 124, p. 337.

    Article  ADS  Google Scholar 

  65. O’Rourke, P.J., Collective drop effects in vaporizing liquid sprays, Los Alamos National Lab., 1981, report LA-9069-T.

  66. O’Rourke, P.J. and Wadt, W.R., A two-dimensional, two-phase numerical model for spray dryers, Los Alamos National Laboratory, 1982, report LA-9423-MS.

  67. Gu, X., Basu, S., and Kumar, R., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 5322.

    Article  Google Scholar 

  68. Sommerfeld, M., Int. J. Multiphase Flow, 2001, vol. 27, no. 10, p. 1829.

    Article  Google Scholar 

  69. Berlemont, A., Achim, P., and Chang, Z., Phys. Fluids, 2001, vol. 13, no. 9, p. 2946.

    Article  ADS  Google Scholar 

  70. Crowe, C., Sommerfeld, M., and Tsuji, Y., Multiphase Flows with Droplets and Particles, Boca Raton, FL: CRC, 1998.

    Google Scholar 

  71. Varaksin, A.Yu., Collisions in Particle-Laden Gas Flows, New York: Begell House, 2013.

    Google Scholar 

  72. Lain, S. and Sommerfeld, M., Int. J. Multiphase Flow, 2012, vol. 39, p. 105.

    Article  Google Scholar 

  73. Pasternak, L. and Sommerfeld, M., in Proc. 28th Conf. on Liquid Atomization and Spray Systems, ILASS-Europe 2017, Valencia, Spain, 2017, report 4781.

  74. Qian, J. and Law, C.K., J. Fluid Mech., 1997, vol. 331, p. 59.

    Article  ADS  Google Scholar 

  75. Estrade, J.-P., Carentz, H., Lavergne, G., and Biscos, Y., Int. J. Heat Fluid Flow, 1999, vol. 20, p. 486.

    Article  Google Scholar 

  76. Brazier-Smith, P.R., Jennings, S.G., and Latham, J., Proc. R. Soc. London, Ser. A, 1972, vol. 326, p. 393.

    Article  ADS  Google Scholar 

  77. Ashgriz, N. and Poo, J.Y., J. Fluid Mech., 1990, vol. 221, p. 183.

    Article  ADS  Google Scholar 

  78. Jiang, Y.J., Umemura, A., and Law, C.K., J. Fluid Mech., 1992, vol. 234, p. 171.

    Article  ADS  Google Scholar 

  79. Bardia, R., Liang, Z., Keblinski, P., and Trujillo, M.F., Phys. Rev. E, 2016, vol. 93, 053104.

    Article  ADS  Google Scholar 

  80. Focke, C., Kuschel, M., Sommerfeld, M., and Bothe, D., Int. J. Multiphase Flow, 2013, vol. 56, p. 81.

    Article  Google Scholar 

  81. Nikolopoulos, N., Nikas, K.-S., and Bergeles, G., Comput. Fluids, 2009, vol. 38, no. 6, p. 1191.

    Article  Google Scholar 

  82. Mazloomi, M.A., Chikatamarla, S.S., and Karlin, I.V., Phys. Rev. Lett., 2015, vol. 114, 174502.

    Article  ADS  Google Scholar 

  83. Peng, B., Wang, S., Lan, Z., Xu, W., Wen, R., and Ma, X., Appl. Phys. Lett., 2013, vol. 102, no. 15.

  84. Lehr, F., AIChE J., 2002, vol. 48, p. 2426.

    Article  Google Scholar 

  85. Hirschler, M., Oger, G., Nieken, U., and Le Touzé, D., Int. J. Multiphase Flow, 2017, vol. 95, p. 175.

    Article  MathSciNet  Google Scholar 

  86. Orme, M., Prog. Energy Combust. Sci., 1997, vol. 23, no. 1, p. 65.

    Article  Google Scholar 

  87. Qian, J. and Law, C.K., J. Fluid Mech., 1997, vol. 331, p. 59.

    Article  ADS  Google Scholar 

  88. Simonin, O., in Proc. 4th Int. Symp. Gas-Solid Flows, Am. Soc. Mech. Eng., Fluid Eng. Div., 1991, vol. 121, p. 197.

  89. Laín, S. and García, J.A., Chem. Eng. Sci., 2006, vol. 61, p. 6775.

    Article  Google Scholar 

  90. García, J.A., Experimental study of an axisymmetric two-phase jet. Measurements of concentration and particle flow intensity. Dispersion characteristics, Ph.D. Thesis, Zaragoza: Univ. Zaragoza, Spain, 2000.

  91. Yan, J., Luo, K., Fan, J., Tsuji, Y., and Cen, K., Int. J. Multiphase Flow, 2008, vol. 34, p. 723.

    Article  Google Scholar 

  92. Chung, M.K. and Troutt, T.R., J. Fluid Mech., 1988, vol. 186, p. 199.

    Article  ADS  Google Scholar 

  93. Uchiyama, T. and Naruseb, M., Powder Technol., 2003, vol. 131, p. 156.

    Article  Google Scholar 

  94. Fan, J.R., Luo, K., Ha, M.Y., and Cen, K.F., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2004, vol. 70, 026303

    Article  ADS  Google Scholar 

  95. Luo, K., Klein, M., Fan, J.R., and Cen, K.F., Phys. Lett. A, 2006, vol. 357, p. 345.

    Article  ADS  Google Scholar 

  96. Rouson, D.W. and Eaton, J.K., in Numerical Methods in Multiphase Flows, Am. Soc. Mech. Eng., Fluid Eng. Div., 1995, vol. 185, p. 47.

    Google Scholar 

  97. Wang, Q. and Squires, K.D., Phys. Fluids, 1996, vol. 8, p. 1207.

    Article  ADS  Google Scholar 

  98. Yonemura, S., Tanaka, T., and Tsuji, Y., in Gas-Solid Flows, Am. Soc. Mech. Eng., Fluid Eng. Div., 1993, vol. 166, p. 303.

    Google Scholar 

  99. Bird, G.A., Molecular Gas Dynamics, London: Oxford Univ. Press, 1976.

    Google Scholar 

  100. Illner, R. and Neunzert, H., On simulation methods for the boltzmann equation, Transp. Theory Stat. Phys., 1987, vol. 16, p. 141.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Sommerfeld, M., in Gas-Particle Flows, Am. Soc. Mech. Eng., Fluid Eng. Div., 1995, vol. 228, p. 335.

    MATH  Google Scholar 

  102. Kussin, J. and Sommerfeld, M., Exp. Fluids, 2002, vol. 33, p. 143.

    Article  Google Scholar 

  103. Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., and Tsuji, Y., J. Fluid Mech., 2001, vol. 442, p. 303.

    Article  ADS  Google Scholar 

  104. Kulick, J.D., Fessler, J.R., and Eaton, J.K., J. Fluid Mech., 1994, vol. 277, p. 109.

    Article  ADS  Google Scholar 

  105. Breuer, M. and Aletto, M., Int. J. Heat Fluid Flow, 2012, vol. 35, p. 2.

    Article  Google Scholar 

  106. Benson, M., Tanaka, T., and Eaton, J.K., J. Fluids Eng., 2005, vol. 127, p. 250.

    Article  Google Scholar 

  107. Boree, J., Ishima, T., and Flour, I., J. Fluid Mech., 2001, vol. 443, p. 129.

    Article  ADS  Google Scholar 

  108. Nasr, H. and Ahmadi, J., Int. J. Heat Fluid Flow, 2007, vol. 28, p. 1507.

    Article  Google Scholar 

  109. Vreman, B., Geurts, B.J., Deen, N.J., Kuipers, J.A.M., and Kuerten, J.G.M., Flow, Turbul. Combust., 2009, vol. 82, p. 47.

    Article  Google Scholar 

  110. Tolle, G.C. and Greenwood, D.R., Design of Fittings to Reduce Wear Caused by Sand Erosion, Am. Pet. Inst., 1977.

    Google Scholar 

  111. Eyler, R.L., Design and analysis of a pneumatic flow loop, Ph.D. Thesis, Morgantown: West Virginia Univ., 1987.

  112. Bourgoyne, A., in Proc. SPE/IADS Drilling Conf., New Orleans, LA, 1989, p. 807.

  113. Solnordal, C.B., Wong, C.Y., and Boulanger, J., Wear, 2015, vol. 336-337, p. 43.

    Article  Google Scholar 

  114. Kesana, N.R., Grubb, S.A., McLaury, B.S., and Shirazi, S.A., J. Energy Resour. Technol., 2013, vol. 135, no. 3.

  115. Vieira, R.E., Mansouri, A., McLaury, B.S., and Shirazi, S.A., Powder Technol., 2016, vol. 288, p. 339.

    Article  Google Scholar 

  116. Brown, G., Appl. Math. Model, 2002, vol. 26, no. 2, p. 155.

    Article  Google Scholar 

  117. Chucri Pereira, G., José de Souza, F., and Alves de Moro Martins, D., Powder Technol., 2014, vol. 261, p. 105.

    Article  Google Scholar 

  118. Parsi, M., Agrawal, M., Srinivasan, V., Vieira, R.E., Torres, C.F., McLaury, B.S., and Shirazi, S.A., J. Nat. Gas Sci. Eng., 2015, vol. 27, p. 706.

    Article  Google Scholar 

  119. Mansouri, A., Arabnejad, H., Shirazi, S., and McLaury, B., Wear, 2015, vols. 332–333, p. 1090.

    Article  Google Scholar 

  120. Mansouri, A., Arabnejad, H., Karimi, S., Shirazi, S.A., and McLaury, B.S., Wear, 2015, vols. 338–339, p. 339.

    Article  Google Scholar 

  121. Ribeiro Duarte, C.A., José de Souza, F., and Fagundes dos Santos, V., Powder Technol., 2015, vol. 283, p. 593.

    Article  Google Scholar 

  122. Ribeiro Duarte, C.A., José de Souza, F., de Vasconcelos Salvo, R., and Fagundes dos Santos, V., Int. J. Multiphase Flow, 2017, vol. 89, p. 1.

    Article  Google Scholar 

  123. Ariane, M., Sommerfeld, M., and Alexiadis, A., Powder Technol., 2018, vol. 334, p. 65.

    Article  Google Scholar 

  124. Zhong, W.Q., Yu, A.B., Liu, X.J., Tong, Z.B., and Zhang, H., Powder Technol., 2016, vol. 302, p. 108.

    Article  Google Scholar 

  125. Ouchene, R., Khalij, M., Arcen, B., and Taniere, A., Powder Technol., 2016, vol. 303, p. 33.

    Article  Google Scholar 

  126. Voth, G.A. and Soldati, A., Ann. Rev. Fluid Mech., 2017, vol. 49, p. 249.

    Article  ADS  Google Scholar 

  127. Arcen, B., Ouchene, R., Khalij, M., and Taniere, A., Phys. Fluids, 2017, vol. 29.

  128. Sommerfeld, M. and Qadir, Z., Int. J. Multiphase Flow, 2018, vol. 101, p. 212.

    Article  MathSciNet  Google Scholar 

  129. Zaichik, L.I. and Varaksin, A.Yu., High Temp., 1999, vol. 37, no. 4, p. 655.

    Google Scholar 

  130. Gurentsov, E.V., Eremin, A.V., and Mikheeva, E.Yu., High Temp., 2017, vol. 55, no. 5, p. 723.

    Article  Google Scholar 

  131. Gubaidullin, D.A., Zaripova, R.G., Tkachenko, L.A., and Shaidullin, L.R., High Temp., 2017, vol. 55, no. 3, p. 469.

    Article  Google Scholar 

  132. Gubaidullin, D.A., Zaripova, R.G., Tkachenko, L.A., and Shaidullin, L.R., High Temp., 2018, vol. 56, no. 1, p. 146.

    Article  Google Scholar 

  133. Gubaidullin, D.A. and Fedorov, Yu.V., High Temp., 2018, vol. 56, no. 2, p. 306.

    Article  Google Scholar 

  134. Eaton, J.K. and Fessler, J.R., Int. J. Multiphase Flow, 1994, vol. 20, p. 169.

    Article  Google Scholar 

  135. Reade, W.C. and Collins, L.R., Phys. Fluids, 2000, vol. 12, p. 2530.

    Article  ADS  Google Scholar 

  136. Varaksin, A.Y., Romash, M.E., and Kopeitsev, V.N., Int. J. Heat Mass Transfer, 2013, vol. 64, p. 817.

    Article  Google Scholar 

  137. Varaksin, A.Y., Romash, M.E., and Kopeitsev, V.N., in Proc. 6th Int. Symp. on Multiphase Flow, Heat Mass Transfer and Energy Conversion, AIP Conf. Proc., 2010, vol. 1207, p. 342.

  138. Zaichik, L.I. and Alipchenkov, V.M., Phys. Fluids, 2003, vol. 15, p. 1776.

    Article  ADS  Google Scholar 

  139. Zaichik, L.I. and Alipchenkov, V.M., Int. J. Heat Fluid Flow, 2005, vol. 26, p. 416.

    Article  Google Scholar 

  140. Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., High Temp., 2010, vol. 48, no. 3, p. 411.

    Article  Google Scholar 

  141. Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., High Temp., 2011, vol. 49, no. 2, p. 310.

    Article  Google Scholar 

  142. Volkov, A.N., Tsirkunov, Y.M., and Oesterle, B., Int. J. Multiphase Flow, 2005, vol. 31, p. 1244.

    Article  Google Scholar 

  143. Reviznikov, D.L., Sposobin, A.V., and Sukharev, T.Yu., High Temp., 2017, vol. 55, no. 3, p. 400.

    Article  Google Scholar 

  144. Reviznikov, D.L., Sposobin, A.V., and Ivanov, I.E., High Temp., 2018, vol. 56, no. 6, p. 884.

    Article  Google Scholar 

  145. Kotel’nikov, A.L., Bazhenova, T.V., Bivol, G.Yu., and Lenkevich, D.A., High Temp., 2017, vol. 55, no. 1, p. 162.

    Article  Google Scholar 

  146. Molleson, G.V. and Stasenko, A.L., High Temp., 2017, vol. 55, no. 1, p. 87.

    Article  Google Scholar 

  147. Molleson, G.V. and Stasenko, A.L., High Temp., 2017, vol. 55, no. 6, p. 906.

    Article  Google Scholar 

  148. Varaksin, A.Yu. and Protasov, M.V., High Temp., 2017, vol. 55, no. 6, p. 945.

    Article  Google Scholar 

  149. Alekseev, V.B., Zalkind, V.I., Nizovskii, V.L., Nizovskii, L.V., Khyamyalyainen, L.T., and Shchigel’, S.S., High Temp., 2018, vol. 56, no. 3, p. 418.

    Article  Google Scholar 

  150. Varaksin, A.Yu., Mikhatulin, D.S., Polezhaev, Yu.V., and Polyakov, A.F., Teplofiz. Vys. Temp., 1995, vol. 33, no. 6, p. 915.

    Google Scholar 

Download references

Funding

This work was carried out with the partial support of the Russian Foundation for Basic Research, project no. 18-08-01382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Varaksin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varaksin, A.Y. Collision of Particles and Droplets in Turbulent Two-Phase Flows. High Temp 57, 555–572 (2019). https://doi.org/10.1134/S0018151X19040230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19040230

Navigation