Skip to main content
Log in

Modeling of Detonation of Metal-Gas Combustible Mixtures in High-Speed Flow Behind a Shock Wave

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

A physical and mathematical model that makes it possible to describe the processes of the self-ignition, combustion, and detonation of combustible metal-gas mixtures is given. A simplified physical and mathematical model of the process has been developed. Dispersed particles are considered to be multicomponent, and the processes of the melting and evaporation of the particle material, as well as surface reactions (in which both liquid and gaseous components can participate) are taken into account. The carrier gas is considered multicomponent with the possibility of an arbitrary number of chemical reactions. The case in which the combustion products are in a state of thermodynamic equilibrium is considered, and the presence of fine particles of metals, oxides, and metal nitrides are taken into account. The structure and minimum propagation velocity of a stationary detonation wave are determined by calculation. It is shown that the parameters calculated in waves asymptotically tend to their equilibrium values. The developed physical and mathematical model and computational algorithms can be used to create methods to model the combustion and detonation of metal-gas mixtures in a multidimensional formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pokhil, P.F., Belyaev, A.F., Frolov, Yu.V., Logachaev, V.S., and Korotkov, A.I., Gorenie poroshkoobraznykh metallov v aktivnykh sredakh (Combustion of Powdered Metals in Active Media), Moscow: Nauka, 1972.

  2. Mitrofanov, V.V., Detonatsiya gomogennykh i geterogennykh sistem (Detonation of Homogeneous and Heterogeneous Systems), Novosibirsk: Inst. Gidrodin. im. M.A. Lavrent’eva, Sib. Otd. Ross. Akad. Nauk, 2003.

  3. Medvedev, A.E., Fedorov, A.V., and Fomin, V.M., Combust., Explos. Shock Waves (Engl. Transl.), 1984, vol. 20, no. 2, p. 127.

  4. Gremyachkin, V.M., Istratov, A.G., and Leipunskii, O.I., Combust., Explos. Shock Waves (Engl. Transl.), 1975, vol. 11, no. 3, p. 313.

  5. Dregalin, A.F., Zenukov, I.A., Kryukov, V.G., and Naumov, V.I., Matematicheskoe modelirovanie vysokotemperaturnykh protsessov v energoustanovkakh (Mathematical Simulation of High-Temperature Processes in Power Plants), Alemasov, V.E., Ed., Kazan: Kazansk. Gos. Univ., 1985.

    Google Scholar 

  6. Fedorov, A.V., Fomin, V.M., and Khmel’, T.A., Heterogeneous detonation, in Zakony goreniya (Combustion Laws), Polezhaev, Yu.V., Ed., Moscow: Energomash, 2006.

  7. Fizika vzryva (Explosion Physics), Orlenko, L.P., Ed., Moscow: Fizmatlit, 2004.

    Google Scholar 

  8. Yagodnikov, D.A., Vosplamenenie i gorenie poroshkoobraznykh metallov (Ignition and Combustion of Powdered Metals), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2009.

  9. Il’in, A.P. and Gromov, A.A., Gorenie poroshkov alyuminiya i bora v sverkhtonkom sostoyanii (Combustion of Aluminum and Boron Powders in Ultrafine Condition), Tomsk: Tomsk. Gos. Univ., 2002.

  10. Afanas’eva, E.A. and Levin, V.A., Combust., Explos. Shock Waves (Engl. Transl.), 1987, vol. 23, no. 1, p. 6.

  11. Kratova, Yu.V., Fedorov, A.V., and Khmel’, T.A., Combust., Explos. Shock Waves (Engl. Transl.), 2011, vol. 47, no. 5, p. 572.

  12. Kratova, Yu.V., Khmel’, T.A., and Fedorov, A.V., Combust., Explos. Shock Waves (Engl. Transl.), 2016, vol. 52, no. 1, p. 74.

  13. Gidaspov, V.Yu., Numerical simulation of stationary detonation waves in a mixture of aluminum particles with air, Tr. Mosk. Aviats. Inst., 2011, no. 49.

  14. Popov, V.N., Fedorov, A.V., and Shul’gin, A.V., Mat. Model., 2007, vol. 19, no. 6, p. 109.

    Google Scholar 

  15. Avdeev, K.A., Frolov, F.S., Basevich, A.A., and Frolov, S.M., Russ. J. Phys. Chem. B, 2008, vol. 2, no. 3, p. 456.

    Article  Google Scholar 

  16. Fedorov, A.V. and Tropin, D.A., Combust., Explos. Shock Waves (Engl. Transl.), 2008, vol. 44, no. 5, p. 552.

  17. Andreev, M.A. and Stepanov, A.M., Combust., Explos. Shock Waves (Engl. Transl.), 1986, vol. 22, no. 1, p. 97.

  18. Gidaspov, V.Yu., Numerical simulation of stationary combustion and detonation waves in a mixture of magnesium particles with air, Tr. Mosk. Aviats. Inst., 2013, no. 66.

  19. Gremyachkin, V.M., Istratov, A.G., and Leipunskii, O.I., Combust., Explos. Shock Waves (Engl. Transl.), 1979, vol. 15, no. 6, p. 691.

  20. Gurevich, M.A., Kir’yanov, I.M., and Ozerov, E.S., Combust., Explos. Shock Waves (Engl. Transl.), 1969, vol. 5, no. 2, p. 150.

  21. Davidchuk, E.L., Dimitrov, V.I., Rafalovich, M.L., Tulupov, Yu.I., and Slavinskaya, N.A., Combust., Explos. Shock Waves (Engl. Transl.), 1991, vol. 27, no. 1, p. 40.

  22. Davidchuk, E.L., Dimitrov, V.I., Zalozh, V.A., Slavinskaya, N.A., and Tulupov, Yu.I., Combust., Explos. Shock Waves (Engl. Transl.), 1991, vol. 27, no. 1, p. 47.

  23. Gidaspov, V.Yu., Numerical simulation of stationary combustion and detonation waves in a mixture of boron particles with air, Tr. Mosk. Aviats. Inst., 2016, no. 91.

  24. Rashkovskii, S.A., Milekhin, Yu.M., and Fedorychev, A.V., Combust., Explos. Shock Waves (Engl. Transl.), 2017, vol. 53, no. 6, p. 652.

  25. Gidaspov, V.Yu., Moskalenko, O.A., and Pirumov, U.G., Vestn. Mosk. Aviats. Inst., 2009, vol. 16, no. 2, p. 51.

    Google Scholar 

  26. Lenkevich, D.A., Golovastov, S.V., Golub, V.V., Bocharnikov, V.M., and Bivol, G.Yu., High Temp., 2014, vol. 52, no. 6, p. 890.

    Article  Google Scholar 

  27. Bivol, G.Yu., Golovastov, S.V., and Golub, V.V., High Temp., 2017, vol. 55, no. 4, p. 561.

    Article  Google Scholar 

  28. Volkov, V.A., Gidaspov, V.Yu., Pirumov, U.G., and Strel’tsov, V.Yu., High Temp., 1998, vol. 36, no. 3, p. 401.

    Google Scholar 

  29. Gidaspov, V.Yu. and Severina, N.S., Combust., Explos. Shock Waves (Engl. Transl.), 2013, vol. 49, no. 4, p. 409.

  30. Gidaspov, V.Yu. and Severina, N.S., High Temp., 2015, vol. 53, no. 4, p. 526.

    Article  Google Scholar 

  31. Gidaspov, V.Yu. and Severina, N.S., High Temp., 2017, vol. 55, no. 5, p. 777.

    Article  Google Scholar 

  32. Gidaspov, V.Yu., Moskalenko, O.A., and Severina, N.S., High Temp., 2018, vol. 56, no. 5, p. 751.

    Article  Google Scholar 

  33. Lunev, V.V., Techenie real’nykh gazov s bol’shimi skorostyami (The Flow of Real Gases at High Velocities), Moscow: Fizmatlit, 2007.

  34. Frank-Kamenetskii, A.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1967.

  35. Zel’dovich, Ya.B., Teoriya goreniya i detonatsii gazov (Theory of Combustion and Detonation of Gases), Moscow: Akad. Nauk SSSR, 1944.

  36. Termodinamicheskie svoistva individual’nykh veshchestv: Spravochnoe izdanie (Thermodynamic Properties of Individual Substances: A Reference Book), 4 vols., Gurvich, L.V. Veits, I.V., Medvedev, V.A., et al., Eds., Moscow: Nauka, 1982.

  37. Gidaspov, V.Yu. and Severina, N.S., Nekotorye zadachi fizicheskoi gazovoi dinamiki (Some Problems of Physical Gas Dynamics), Moscow: Mosk. Aviats. Inst., 2016.

  38. Read, R., Prausnitz, J., and Sherwood, T., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.

    Google Scholar 

Download references

Funding

The work was performed in accordance with state assignment no. 9.7555.2017/BC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Severina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hydaspov, V.Y., Severina, N.S. Modeling of Detonation of Metal-Gas Combustible Mixtures in High-Speed Flow Behind a Shock Wave. High Temp 57, 514–524 (2019). https://doi.org/10.1134/S0018151X19040060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19040060

Navigation