High Temperature

, Volume 57, Issue 3, pp 393–397 | Cite as

The Influence of the Angle of the Output Cut of a Cylindrical Channel on the Formation of Jets of Heated Gas and Overheated Liquid

  • B. P. Zhilkin
  • L. V. PlotnikovEmail author
  • N. S. Kochev
  • A. V. Reshetnikov
  • N. A. Mazheiko
  • K. A. Busov


The results of experimental research on the horizontal discharge of heated gas and overheated water through nozzles with channels having a round cross-section and different cutoff angles of the outlet aperture are presented. The processes of liquids and gases discharge are visualized via photographic survey and thermal-imaging diagnostics. Comparative analysis of the main characteristics of liquid and gas jets discharged at different initial conditions and channels of different configurations is performed. It is established that there is no shift in the jet axis with respect to the outlet-aperture axis during the discharge of heated gas through nozzles with a cutoff. Different behavior is observed during the discharge of overheated water through nozzles with a cutoff. In this case the jet axis is shifted towards the cutoff direction with respect to the outlet-aperture axis, which is in the interval 15°–18° depending on the initial conditions. Practical recommendations on the use of the discovered mechanisms in engine technology (during fuel atomization by nozzles) are suggested based on the research results.



The work was supported by the Russian Foundation for Basic Research, project no. 18-08-00742.


  1. 1.
    Engelmeier, L., Pollak, S., and Weidner, E., J. Supercrit. Fluids, 2018, vol. 132, p. 33.CrossRefGoogle Scholar
  2. 2.
    Engelmeier, L., Pollak, S., Peters, F., and Weidner, E., Exp. Fluids, 2018, vol. 59, no. 1, p. 5.CrossRefGoogle Scholar
  3. 3.
    Cai, B., Zhang, Q., Jiang, Y., Gu, H., and Wang, H., Int. J. Heat Mass Transfer, 2018, vol. 113, p. 1106.CrossRefGoogle Scholar
  4. 4.
    Tsui, Y.-Y. and Lin, S.-W., Int. J. Heat Mass Transfer, 2016, vol. 93, p. 337.CrossRefGoogle Scholar
  5. 5.
    Mutair, S. and Ikegami, Y., Int. J. Therm. Sci., 2012, vol. 57, p. 37.CrossRefGoogle Scholar
  6. 6.
    Mutair, S. and Ikegami, Y., Desalination, 2010, vol. 251, nos. 1–3, p. 103.CrossRefGoogle Scholar
  7. 7.
    Sotome, I., Ogasawara, Y., Nadachi, Y., Takenaka, M., Okadome, H., and Isobe, S., Jpn. J. Food Eng., 2009, vol. 10, no. 3, p. 163.CrossRefGoogle Scholar
  8. 8.
    Lee, J., Madabhushi, R., Fotache, C., Gopalakrishnan, S., and Schmidt, D., Proc. Combust. Inst., 2009, vol. 32, p. 3215.CrossRefGoogle Scholar
  9. 9.
    Plotnikov, L.V., Mazheiko, N.A., and Busov, K.A., Dvigatelestroenie, 2014, no. 3, p. 8.Google Scholar
  10. 10.
    Lukynov, K.V., Starostin, A.A., and Skripov, P.V., Int. J. Heat Mass Transfer, 2017, vol. 106, p. 657.CrossRefGoogle Scholar
  11. 11.
    Avdeev, A.A., High Temp., 2017, vol. 55, no. 5, p. 753.CrossRefGoogle Scholar
  12. 12.
    Zalkind, V.I., Zeigarnik, Y.A., Nizovskiy, V.L., Nizovskiy, L.V., and Schigel, S.S., J. Phys: Conf. Ser., 2017, vol. 891, no. 1, 012011.Google Scholar
  13. 13.
    Alekseev, V.B., Zalkind, V.I., Zeigarnik, Yu.A., Marinichev, D.V., Nizovskii, V.L., and Nizovskii, L.V., High Temp., 2015, vol. 53, no. 2, p. 214.CrossRefGoogle Scholar
  14. 14.
    Mazheiko, N.A., Reshetnikov, A.V., Busov, K.A., et al., Tyazh. Mashinostr., 2014, no. 6, p. 35.Google Scholar
  15. 15.
    Reshetnikov, A.V., Mazheiko, N.A., Skokov, V.N., and Koverda, V.P., Int. J. Heat Mass Transfer, 2015, vol. 85, p. 965.CrossRefGoogle Scholar
  16. 16.
    Reshetnikov, A.V., Busov, K.A., Mazheiko, N.A., Skokov, V.N., and Koverda, V.P., Thermophys. Aeromech., 2012, vol. 19, no. 2, p. 329.ADSCrossRefGoogle Scholar
  17. 17.
    Reshetnikov, A.V., Mazheiko, N.A., and Busov, K.A., Int. Phenomena Heat Transfer, 2017, vol. 5, no. 3, p. 201.CrossRefGoogle Scholar
  18. 18.
    Merker, G.P., Schwarz, C., Stiesch, G., and Otto, F., Simulating Combustion, Berlin: Springer, 2006.Google Scholar
  19. 19.
    Gimeno, J., Martí-Aldaraví, P., Carreres, M., and Peraza, J.E., Int. J. Eng. Res., 2018, vol. 19, no. 3, p. 374.CrossRefGoogle Scholar
  20. 20.
    Grekhov, L.V., Akkumulyatornye toplivnye sistemy dvigatelei vnutrennego sgoraniya tipa Common Rail (Accumulator Fuel Systems of Common Rail Internal Combustion Engines), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2000.Google Scholar
  21. 21.
    Zhilkin, B.P., Zaikov, N.S., Kisel’nikov, A.Yu., Mirenskii, V.Yu., and Khudyakov, P.Yu., Instrum. Exp. Tech., 2006, vol. 53, no. 1, p. 143.CrossRefGoogle Scholar
  22. 22.
    Zhilkin, B.P., Larionov, I.D., and Shuba, A.N., RF Patent 2230300, 2002.Google Scholar
  23. 23.
    Zhilkin, B.P., Larionov, I.D., and Shuba, A.N., Instrum. Exp. Tech., 2004, vol. 47, no. 4, p. 545.CrossRefGoogle Scholar
  24. 24.
    Abramovich, G.N., Prikladnaya gazovaya dinamika (Applied Gas Dynamics), Moscow: Nauka, 1969.Google Scholar
  25. 25.
    Busov, K.A., Tepl. Protsessy Tekh., 2011, vol. 3, no. 7, p. 308.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. P. Zhilkin
    • 1
  • L. V. Plotnikov
    • 1
    Email author
  • N. S. Kochev
    • 1
  • A. V. Reshetnikov
    • 2
  • N. A. Mazheiko
    • 2
  • K. A. Busov
    • 2
  1. 1.Ural Federal University Named after the First President of Russia B.N. YeltsinYekaterinburgRussia
  2. 2.Institute of Thermal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations