Skip to main content
Log in

Experimental Study of the Influence of the Shape of the Gap between the Rib and Flat Plate on the Near-Wall Flow Structure and Heat Transfer

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The article presents an analysis of the results of an experimental study of the dynamic and thermal characteristics of the turbulent boundary layer of the air near a heated plate at qw = const with rectangular ribs having slit channels of different geometry: confusor, diffuser, and plane-parallel. The slit channel is located between the plate and the lower rib wall. The results are compared with similar data for a solid rib without the slit channel. A Pitot–Prandtl microprobe with a microthermocouple and the Dantec Dynamics hot-wire anemometer were used, thus making it possible to study the laminar sublayer, the transition domain, and the outer part of the boundary layer. The influence of the slit profile on the average and the pulsation characteristics of the turbulent dynamic and thermal boundary layers in the median section of the plate with the slit rib is revealed. It is found that the separated zone disappears in the flow behind the ribs with the confusor slit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Afanas’ev, V.N., Veselkin, V.Yu., Leont’ev, A.I., Skibin, A.P., and Chudnovskii, Ya.P., Hydrodynamics and heat transfer in a flow around a single depression on an initially smooth surface, Preprint of Bauman Moscow State Tech. Univ., Moscow, 1991, no. 2–91.

  2. Burtsev, S.A., Kiselev, N.A., and Leont’ev, A.I., High Temp., 2014, vol. 52, no. 6, p. 895.

    Article  Google Scholar 

  3. Afanasyev, V.N., Chudnovsky, Ya.P., Leontiev, A.I., and Roganov, P.S., Exp. Therm. Fluid Sci., 1993, vol. 7, p. 1.

    Article  Google Scholar 

  4. Leontiev, A.I., Kiselev, N.A., Burtsev, S.A., Strongin, M.M., and Vinogradov, Y.A., Exp. Therm. Fluid Sci., 2016, vol. 79, p. 74.

    Article  Google Scholar 

  5. Afanas’ev, V.N. and Kon Dehai, Nauka Obraz., 2017, no. 4. https://doi.org/10.7463/0417.0000932

  6. Afanasiev, V.N. and Kong Dehai, J. Phys.: Conf. Ser., 2017, vol. 891, 012140.

    Google Scholar 

  7. Afanasiev, V.N., Trifonov, V.L., Getya, S.I., and Kong Dehai, Mashinostr. Kompyut. Technol., 2017, no. 10. http://www.technomagelpub.ru/jour/article/view/1312.

  8. Fouladi, F., Henshaw, P., Ting, D.S.-K., and Ray, S., Int. J. Heat Mass Transfer, 2017, vol. 104, p. 1202.

    Article  Google Scholar 

  9. Larichkin, V.V. and Yakovenko, S.N., J. Appl. Mech. Tech. Phys., 2003, vol. 44, no. 3, p. 365.

    Article  ADS  Google Scholar 

  10. Kalinin, E.K., Dreitser, G.A., and Yarkho, S.A., Intensifikatsiya teploobmena v kanalakh (Intensification of Heat Transfer in the Channels), Moscow: Mashinostroenie, 1990.

  11. Teploobmen v dozvukovykh otryvnykh potokakh (Heat Transfer in Subsonic Tearing Streams), Terekhov, V.I., Ed., Novosibirsk: Novosibirsk. Gos. Tekh. Univ., 2016.

    Google Scholar 

  12. Terekhov, V.I., Yarygina, N.I., and Zhdanov, R.F., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 4535.

    Article  Google Scholar 

  13. Smulsky, Ya.I., Terekhov, V.I., and Yarygina, N.I., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 726.

    Article  Google Scholar 

  14. Wang, L. and Sunden, B., Heat Mass Transfer, 2007, vol. 43, p. 759.

    Article  ADS  Google Scholar 

  15. Ligrani, P., Int. J. Rotating Mach., 2013, vol. 2013, no. 275653, p. 32.

    Article  Google Scholar 

  16. Ji, W.T., Jacobi, A.M., He, Y.L., and Tao, W.Q., Int. J. Heat Mass Transfer, 2015, vol. 88, p. 735.

    Article  Google Scholar 

  17. Molochnikov, V.M., Mikheev, N.I., Davletshin, I.A., and Paerelii, A.A., Izv. Ross. Akad. Nauk, Energ. 2008, no. 1, p. 137.

  18. Nagano, Y., Hattori, H., and Houra, T., Int. J. Heat Fluid Flow, 2004, vol. 25, p. 393.

    Article  Google Scholar 

  19. Wang, L., Salewski, M., and Sunden, B., Exp. Therm. Fluid Sci., 2010, vol. 34, p. 165.

    Article  Google Scholar 

  20. Panigrahi, P.K., Schröder, A., and Kompenhan, J., Exp. Fluids, 2006, vol. 40, p. 277.

    Article  Google Scholar 

  21. Huang, J.J. and Liou, T.M., J. Turbomach., 1997, vol. 119, p. 617.

    Article  Google Scholar 

  22. Huang, J.J. and Liou, T.M., J. Heat Transfer, 1994, vol. 116, p. 912.

    Article  Google Scholar 

  23. Tariq, A., Panigrahi, P.K., and Muralidhar, K., Exp. Fluids, 2004, vol. 37, p. 701.

    Article  Google Scholar 

  24. Liou, T.M., Yang, C.P., and Lee, H.L., J. Heat Transfer, 1997, vol. 119, p. 383.

    Google Scholar 

  25. Tisa, J.P. and Huang, J.J., Int. J. Heat Mass Transfer, 1999, vol. 42, p. 2071.

    Article  Google Scholar 

  26. Liou, T.M. and Chen, S.H., Int. J. Heat Mass Transfer, 1998, vol. 41, p. 1795.

    Article  Google Scholar 

  27. Ahn, J. and Lee, J.S., Int. J. Heat Mass Transfer, 2010, vol. 53, p. 445.

    Article  Google Scholar 

  28. Terekhov, V.I. and Bogatko, T.V., Tepl. Protsessy Tekh., 2015, vol. 7, no. 2, p. 57.

    Google Scholar 

  29. Liu, H.C. and Wang, J.H., Int. J. Heat Mass Transfer, 2011, vol. 54, p. 575.

    Article  Google Scholar 

  30. Migai, V.K., Povyshenie effektivnosti teploobmennikov (Improving the Efficiency of Heat Exchangers), Leningrad: Energiya, 1980.

  31. Belov, I.A., Isaev, S.A., and Korobkov, V.A., Zadachi i metody rascheta otryvnykh techenii neszhimaemoi zhidkosti (Problems and Methods for Calculating Separated Flows of Incompressible Fluid), Leningrad: Sudostroenie, 1989.

  32. Isaev, S.A., Vatin, N.I., Guvernyuk, S.V., Gagarin, V.G., Basok, B.I., and Zhukova, Yu.V., High Temp., 2015, vol. 53, no. 6, p. 873.

    Article  Google Scholar 

  33. Afanas’ev, V.N. and Trifonov, V.L., Intensifikatsiya teplootdachi pri vynuzhdennoi konvektsii (Intensification of Heat Ttransfer during Forced Convection), Moscow: Mosk. Gos. Tekh. Univ. im. N. E. Baumana, 2007.

  34. Jorgensen, F.E., How to Measure Tturbulence with Hot-Wire Anemometers: A Practical Guide, Skovlunde: Dantec Dynamics, 2002.

  35. Moffat, R.J., Exp. Therm. Fluid Sci., 1988, vol. 1, p. 3.

    Article  ADS  Google Scholar 

Download references

FUNDING

The work is partly supported by the Russian Foundation for Basic Research, project no. 18-58-52005, and the Ministry for Education and Science, state assignment no. 13.5521.2017/BCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehai Kong.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, S.A., Afanasiev, V.N., Egorov, K.S. et al. Experimental Study of the Influence of the Shape of the Gap between the Rib and Flat Plate on the Near-Wall Flow Structure and Heat Transfer. High Temp 57, 379–387 (2019). https://doi.org/10.1134/S0018151X19030064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19030064

Navigation