Skip to main content
Log in

Breakdown of High-Pressure Gases in a Longitudinal Magnetic Field

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

It was discovered experimentally that a longitudinal magnetic field leads to an increase in the current density, conductivity, and partial energy input and a decrease in the times of the formation of all developments stages of discharge and transversal integral radiation and the channel expansion rate. At the same time, a strong magnetic field displaces the maximum of spectral radiation density to the ultraviolet domain with the simultaneous generation of new spectral lines. Magnetic fields, which decrease the channel expansion rate and transversal radiation losses, increase the partial power, conductivity, and plasma temperature at the arc stages, which creates the conditions to obtain hot plasma and to develop the source of ultraviolet and X-ray radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Artsimovich, L.A., Elementarnaya fizika plazmy (Elementary Plasma Physics), Moscow: Atomizdat, 1966.

  2. Artsimovich, L.A. and Luk’yanov, S.Yu., Dvizhenie zaryazhennykh chastits v elektricheskikh i magnitnykh polyakh (Motion of Charged Particles in Electric and Magnetic Fields), Moscow: Nauka, 1978.

  3. Kurchatov, I.V., Usp. Fiz. Nauk, 1956, vol. 59, no. 4, p. 603.

    Article  Google Scholar 

  4. Omarov, O.A., Kurbanismailov, V.S., Omarova, N.O., and Khachalov, M.B., Gazovye razryady vysokogo davleniya vo vneshnem prodol’nom magnitnom pole (High Pressure Gas Discharges in an External Longitudinal Magnetic Field), Makhachkala: Dagestan. Gos. Univ., 2014.

  5. Omarov, O.A., Omarova, N.O., Omarova, P.Kh., Ramazanova, A.A., Al’-Khareti, F.M.A., and Khachalov, M.B., Inzh. Fiz., 2013, no. 5, p. 50.

  6. Chen, F., Introduction to Plasma Physics and Controlled Fusion, New York: Plenum, 1984.

    Book  Google Scholar 

  7. Kurbanismailov, V.S., Omarov, O.A., Ragimkhanov, G.B., et al., Plasma Phys. Rep., 2016, vol. 42, no. 7, p. 687.

    Article  ADS  Google Scholar 

  8. Budker, G.I., in Fizika plazmy i problema upravlyaemykh termoyadernykh reaktsii (Plasma Physics and the Problem of Controlled Thermonuclear Reactions), Leontovich, M.A., Ed., Moscow: Akad. Nauk SSSR, vol. 3, p. 3.

  9. Post, R.F., in Proc. 2nd United Nations Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva: United Nations, 1958, vol. 32, p. 245.

  10. Al’-Khareti, F.M.A., Omarov, O.A., Omarova, N.O., and Omarova, P.Kh., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2015, vol. 38, no. 1, p. 88.

    Google Scholar 

  11. Smirnov, M.B., Fizika slaboionizovannogo gaza (Physics of Low-Ionized Gas), Moscow: Nauka, 1978.

  12. Dolgov, G.G. and Mandel’shtam, S.L., Zh. Eksp. Tekh. Fiz., 1951, vol. 21, p. 691.

    Google Scholar 

  13. Drabkina, S.I., Zh. Eksp. Tekh. Fiz., 1951, vol. 21, p. 473.

    Google Scholar 

  14. Marshak, I.S., Sov. Phys. Usp., 1961, vol. 3, no. 4, p. 624.

    Article  ADS  Google Scholar 

  15. Andreev, S.I., Leonov, S.N., and Liukonen, S.A., Zh. Tekh. Fiz., 1976, vol. 46, p. 981.

    Google Scholar 

  16. Engel, A., Ionized Gases, Oxford: Clarendon, 1955.

    MATH  Google Scholar 

  17. Plasma Diagnostics, Lochte-Holtgreven, W., Ed., Amsterdam: North Holland, 1968.

  18. Aleksandrov, A.F. and Rukhadze, A.A., Fizika sil’notochnykh elektrorazryadnykh istochnikov sveta (Physics of High-Current Electric-Discharge Light Sources), Moscow: Atomizdat, 1976.

  19. Plasma Diagnostic Techniques, Huddlestone, R.H. and Leonard, S.L., Eds., New York: Academic, 1965.

    Google Scholar 

  20. Podgornyi, I.M., Lektsii po diagnostike plazmy (Lectures on Plasma Diagnostics), Moscow: Atomizdat, 1968.

  21. Pinaev, V.A., High Temp., 2017, vol. 55, no. 3, p. 339.

    Article  Google Scholar 

  22. Ulanov, I.M., Litvintsev, A.YU., Pinaev, V.A., High Temp., 2011, vol. 49, no. 1, p. 1.

    Article  Google Scholar 

  23. Al’-Khareti, F.M.A., Omarov, O.A., Omarova, N.O., Omarova, P.Kh., and Khachalov, M.B., Inzh. Fiz., 2013, no. 10, p. 43.

  24. Griem, H.R., Plasma Spectroscopy, New York: McGraw-Hill, 1964.

    Google Scholar 

  25. Griem, H.R., Spectral Line Broadening by Plasmas, New York: Academic, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Omarov.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omarov, O.A., Omarova, N.O., Omarova, P.K. et al. Breakdown of High-Pressure Gases in a Longitudinal Magnetic Field. High Temp 57, 156–163 (2019). https://doi.org/10.1134/S0018151X19020159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19020159

Navigation