Skip to main content

Isochoric Heat Capacity and Cluster Structure of Simple Liquid

Abstract

The formation process of the short-range order and the liquid itself in the critical region is described in terms of a cluster model. The “exploding” formation of dimeric clusters marks the onset. The estimation of cluster size on a vapor–liquid equilibrium curve is proposed. The X-ray diffraction analysis for argon on the saturation line and the observed correlation between the temperature dependences of number of particles in the cluster and the isochoric heat capacity of simple liquids validate the model.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Stewart, R. and Jacobson, R., J. Phys. Chem. Ref. Data, 1989, vol. 18, p. 639.

    ADS  Article  Google Scholar 

  2. 2

    Gladun, C., Cryogenics, 1971, vol. 11, no. 3, p. 205.

    ADS  Article  Google Scholar 

  3. 3

    Gladun, C. and Menzel, F., Cryogenics, 1970, vol. 10, no. 3, p. 210.

    ADS  Article  Google Scholar 

  4. 4

    NIST Chemistry WebBook. http://webbook.nist.gov/ chemistry.

  5. 5

    Friend, D.C., Ely, J.F., and Ingkeim, H., J. Phys. Chem. Ref. Data, 1991, vol. 18, no. 2.

  6. 6

    Younglove, B.A., J. Res. Natl. Bur. Stand., Sect. A, 1974, vol. 78, no. 3, p. 401.

    Google Scholar 

  7. 7

    Stewart, R.B. and Jacobson, R.T., J. Phys. Chem. Ref. Data, 1991, vol. 20, p. 917.

    ADS  Article  Google Scholar 

  8. 8

    Anisimov, M.A., Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh (Critical Phenomena in Liquids and Liquid Crystals), Moscow: Nauka, 1987.

    Google Scholar 

  9. 9

    Jacobsen, R.T., Penoncello, S.G., and Lemmon, E.W., Thermodynamic Properties of Cryogenic Fluids, New York: Springer, 1997.

    Book  Google Scholar 

  10. 10

    Litovitz, T.A. and Davis, C.M., Structural and shear relaxation in liquids, in Physical Acoustics: Principles and Methods, Mason, W.P., Ed., New York: Academic, 1964, vol. 2, part A, p. 281.

  11. 11

    Eisenstein, A. and Gingrich, N.S., Phys. Rev., 1942, vol. 62, p. 261.

    ADS  Article  Google Scholar 

  12. 12

    Physics of Simple Liquids, Temperley, N.H.V., Rowlinson, J.S., and Rushbrooke, G.S., Eds., Amsterdam: North Holland, 1968.

    Google Scholar 

  13. 13

    Sator, N., Phys. Rep., 2003, vol. 376, no. 1, p. 1.

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    Mendeleev, D.I., Rastvory (Solutions), Moscow: Akad. Nauk SSSR, 1959.

    Google Scholar 

  15. 15

    Shakhparonov, M.I., Vvedenie v sovremennuyu teoriyu rastvorov (Introduction to the Modern Theory of Solutions), Moscow: Vysshaya Shkola, 1976.

    Google Scholar 

  16. 16

    Sperkach, B.C. and Shakhparonov, M.I., Zh. Fiz. Khim., 1986, vol. 64, no. 8, p. 2216.

    Google Scholar 

  17. 17

    Hobza, P. and Zahradník, R., Intermolecular Complexes. The Role of van der Waals System in Physical Chemistry and in the Biodisciplines, Amsterdam: Elsevier, 1988.

    Google Scholar 

  18. 18

    Hobza, P. and Müller-Dethlefs, K., Non-Covalent Interactions: Theory and Experiment, Manchester: R. Soc. Chem., 2010.

    Google Scholar 

  19. 19

    Neruchev, Yu.A., Diskretno-kontinual’naya model’ dlya prognozirovaniya ravnovesnykh svoistv organicheskikh zhidkostei (Discrete-Continual Model for Predicting the Equilibrium Properties of Organic Liquids), Kursk: Kursk. Gos. Ped. Univ., 2001.

    Google Scholar 

  20. 20

    Neruchev, Yu.A. and Bolotnikov, M.F., High Temp., 2008, vol. 46, no. 1, p. 40.

    Article  Google Scholar 

  21. 21

    Neruchev, Yu.A., Zhdanova, E.S., and Korotkovskii, V.I., Monitoring. Nauka Tekhnol., 2012, no. 1, p. 74.

  22. 22

    Neruchev, Yu.A., Bolotnikov, M.F., and Korotkovskii, V.I., in Mater. XIV Ross. konf. po teplofixizeskim svoistvam veshchestv (Proc. XIV Russ. Conf. on the Thermophysical Properties of Substances), Kazan, 2014, vol. 1, p. 87.

  23. 23

    Rabinovich, B.A., Vasserman, A.A., Nedostup, V.I., and Veksler, V.S., Teplofizicheskie svoistva neona, argona, kriptona i ksenona (Thermophysical Properties of Neon, Argon, Krypton, and Xenon), Moscow: Izd. Standartov, 1976.

    Google Scholar 

  24. 24

    Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook of Thermophysical Properties of Gases and Liquids), Moscow: Nauka.

  25. 25

    Robertson, D.H., Brown, F.B., and Navon, J.M., Chem. Phys., 1989, vol. 90, no. 6, p. 3221.

    ADS  Google Scholar 

  26. 26

    Vlasiuk, M. and Sadus, R.J., J. Chem. Phys., 2017, vol. 147, 024505.

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to sincerely thank Prof. E.B. Postnikov for the discussions of the results, comments, and suggestions. This work was supported by the Russian Foundation for Basic Research, project no. 16-08-01203А.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Neruchev.

Additional information

Translated by L. Trubitsyna

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neruchev, Y.A., Bolotnikov, M.F. & Radchenko, A.K. Isochoric Heat Capacity and Cluster Structure of Simple Liquid. High Temp 56, 673–677 (2018). https://doi.org/10.1134/S0018151X1805019X

Download citation

Keywords

  • Isochoric Heat Capacity
  • Liquid Vapor Equilibrium Curve
  • Dimer Cluster
  • Thermal Motion Energy
  • Mean Particle Number