Advertisement

High Temperature

, Volume 56, Issue 5, pp 673–677 | Cite as

Isochoric Heat Capacity and Cluster Structure of Simple Liquid

  • Yu. A. NeruchevEmail author
  • M. F. Bolotnikov
  • A. K. Radchenko
THERMOPHYSICAL PROPERTIES OF MATERIALS
  • 31 Downloads

Abstract

The formation process of the short-range order and the liquid itself in the critical region is described in terms of a cluster model. The “exploding” formation of dimeric clusters marks the onset. The estimation of cluster size on a vapor–liquid equilibrium curve is proposed. The X-ray diffraction analysis for argon on the saturation line and the observed correlation between the temperature dependences of number of particles in the cluster and the isochoric heat capacity of simple liquids validate the model.

Notes

ACKNOWLEDGMENTS

We would like to sincerely thank Prof. E.B. Postnikov for the discussions of the results, comments, and suggestions. This work was supported by the Russian Foundation for Basic Research, project no. 16-08-01203А.

REFERENCES

  1. 1.
    Stewart, R. and Jacobson, R., J. Phys. Chem. Ref. Data, 1989, vol. 18, p. 639.ADSCrossRefGoogle Scholar
  2. 2.
    Gladun, C., Cryogenics, 1971, vol. 11, no. 3, p. 205.ADSCrossRefGoogle Scholar
  3. 3.
    Gladun, C. and Menzel, F., Cryogenics, 1970, vol. 10, no. 3, p. 210.ADSCrossRefGoogle Scholar
  4. 4.
    NIST Chemistry WebBook. http://webbook.nist.gov/ chemistry.Google Scholar
  5. 5.
    Friend, D.C., Ely, J.F., and Ingkeim, H., J. Phys. Chem. Ref. Data, 1991, vol. 18, no. 2.Google Scholar
  6. 6.
    Younglove, B.A., J. Res. Natl. Bur. Stand., Sect. A, 1974, vol. 78, no. 3, p. 401.Google Scholar
  7. 7.
    Stewart, R.B. and Jacobson, R.T., J. Phys. Chem. Ref. Data, 1991, vol. 20, p. 917.ADSCrossRefGoogle Scholar
  8. 8.
    Anisimov, M.A., Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh (Critical Phenomena in Liquids and Liquid Crystals), Moscow: Nauka, 1987.Google Scholar
  9. 9.
    Jacobsen, R.T., Penoncello, S.G., and Lemmon, E.W., Thermodynamic Properties of Cryogenic Fluids, New York: Springer, 1997.CrossRefGoogle Scholar
  10. 10.
    Litovitz, T.A. and Davis, C.M., Structural and shear relaxation in liquids, in Physical Acoustics: Principles and Methods, Mason, W.P., Ed., New York: Academic, 1964, vol. 2, part A, p. 281.Google Scholar
  11. 11.
    Eisenstein, A. and Gingrich, N.S., Phys. Rev., 1942, vol. 62, p. 261.ADSCrossRefGoogle Scholar
  12. 12.
    Physics of Simple Liquids, Temperley, N.H.V., Rowlinson, J.S., and Rushbrooke, G.S., Eds., Amsterdam: North Holland, 1968.Google Scholar
  13. 13.
    Sator, N., Phys. Rep., 2003, vol. 376, no. 1, p. 1.ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Mendeleev, D.I., Rastvory (Solutions), Moscow: Akad. Nauk SSSR, 1959.Google Scholar
  15. 15.
    Shakhparonov, M.I., Vvedenie v sovremennuyu teoriyu rastvorov (Introduction to the Modern Theory of Solutions), Moscow: Vysshaya Shkola, 1976.Google Scholar
  16. 16.
    Sperkach, B.C. and Shakhparonov, M.I., Zh. Fiz. Khim., 1986, vol. 64, no. 8, p. 2216.Google Scholar
  17. 17.
    Hobza, P. and Zahradník, R., Intermolecular Complexes. The Role of van der Waals System in Physical Chemistry and in the Biodisciplines, Amsterdam: Elsevier, 1988.Google Scholar
  18. 18.
    Hobza, P. and Müller-Dethlefs, K., Non-Covalent Interactions: Theory and Experiment, Manchester: R. Soc. Chem., 2010.Google Scholar
  19. 19.
    Neruchev, Yu.A., Diskretno-kontinual’naya model’ dlya prognozirovaniya ravnovesnykh svoistv organicheskikh zhidkostei (Discrete-Continual Model for Predicting the Equilibrium Properties of Organic Liquids), Kursk: Kursk. Gos. Ped. Univ., 2001.Google Scholar
  20. 20.
    Neruchev, Yu.A. and Bolotnikov, M.F., High Temp., 2008, vol. 46, no. 1, p. 40.CrossRefGoogle Scholar
  21. 21.
    Neruchev, Yu.A., Zhdanova, E.S., and Korotkovskii, V.I., Monitoring. Nauka Tekhnol., 2012, no. 1, p. 74.Google Scholar
  22. 22.
    Neruchev, Yu.A., Bolotnikov, M.F., and Korotkovskii, V.I., in Mater. XIV Ross. konf. po teplofixizeskim svoistvam veshchestv (Proc. XIV Russ. Conf. on the Thermophysical Properties of Substances), Kazan, 2014, vol. 1, p. 87.Google Scholar
  23. 23.
    Rabinovich, B.A., Vasserman, A.A., Nedostup, V.I., and Veksler, V.S., Teplofizicheskie svoistva neona, argona, kriptona i ksenona (Thermophysical Properties of Neon, Argon, Krypton, and Xenon), Moscow: Izd. Standartov, 1976.Google Scholar
  24. 24.
    Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook of Thermophysical Properties of Gases and Liquids), Moscow: Nauka.Google Scholar
  25. 25.
    Robertson, D.H., Brown, F.B., and Navon, J.M., Chem. Phys., 1989, vol. 90, no. 6, p. 3221.ADSGoogle Scholar
  26. 26.
    Vlasiuk, M. and Sadus, R.J., J. Chem. Phys., 2017, vol. 147, 024505.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Yu. A. Neruchev
    • 1
    Email author
  • M. F. Bolotnikov
    • 2
  • A. K. Radchenko
    • 1
  1. 1.Kursk State UniversityKurskRussia
  2. 2.University of UlmUlmGermany

Personalised recommendations