Skip to main content
Log in

Numerical Modeling of the Influence of Thermal Protection Materials on Characteristics of Conjugate Heat and Mass Transfer with Spatial Flow around Blunted Bodies

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The three-dimensional problem of conjugate heat and mass transfer upon the motion of a spherically blunted cone at various angles of attack along a set trajectory is theoretically explored. Thermal protection materials, including carbon materials with high heat-conducting properties, conventional carbon fiber-reinforced plastic coatings, and promising nondestructible ceramic materials, are analyzed. It is shown that the application of the latter makes it possible to preserve the initial geometry of the body and to attain a considerable temperature decrease in the coating surface upon the development of new materials with high thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Utyuzhnikov S.V., Tirskiy G.A. Hypersonic aerodynamics and heat transfer. New York, Connecticut: Begell House. 2014. 536 p.

    Google Scholar 

  2. Anderson, J.D., Hypersonic and High-Temperature Gas Dynamics, Reston, VA: Am. Inst. Aeronaut. Astronaut., 2006.

    Book  Google Scholar 

  3. Polezhaev, Yu.V. and Yurevich, F.P., Teplovaya zashchita (Thermal Protection), Moscow: Energiya, 1976.

    Google Scholar 

  4. Pankratov, B.M., Polezhaev, Yu.V., and Rud’ko, A.K., Vzaimodeistvie materialov s gazovymi potokami (Interaction of Materials with Gas Flows), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  5. Gorskii, V.V. and Zaprivoda, A.V., High Temp., 2014, vol. 52, no. 2, p. 230.

    Article  Google Scholar 

  6. Formalev, V.F., Kolesnik, S.A., Kuznetsova, E.L., and Rabinskii, L.N., High Temp., 2016, vol. 54, no. 3, p. 390.

    Article  Google Scholar 

  7. Geshele, V.D., Polezhaev, Yu.V., Raskatov, I.P., Stonik, O.G., and Gabbasova, G.V., High Temp., 2013, vol. 51, no. 5, p. 722.

    Article  Google Scholar 

  8. Grishin, A.M., Golovanov, A.N., Zinchenko, V.I., Efimov, K.N., and Yakimov, A.S., Matematicheskoe i fizicheskoe modelirovanie teplovoi zashchity (Mathematical and Physical Modeling of Thermal Protection), Tomsk: Tomsk. Gos. Univ., 2011.

    Google Scholar 

  9. Grishin, A.M. and Fomin, V.M., Sopryazhennye i nestatsionarnye zadachi mekhaniki reagiruyushchikh sred (Conjugate and Nonstationary Problems of the Mechanics of Reacting Media), Novosibirsk: Nauka, 1984.

    MATH  Google Scholar 

  10. Zinchenko, V.I., Matematicheskoe modelirovanie sopryazhennykh zadach teplomassoobmena (Mathematical Modeling of Conjugate Heat and Mass Transfer Problems), Tomsk: Tomsk. Gos. Univ., 1985.

    MATH  Google Scholar 

  11. Zemlyanskii, B.A. and Stepanov, G.N., Fluid Dyn., 1981, vol. 16, no. 5, p. 787.

    Article  ADS  Google Scholar 

  12. Zinchenko, V.I., Efimov, K.N., and Yakimov, A.S., High Temp., 2011, vol. 49, no. 1, p. 81.

    Article  Google Scholar 

  13. Antonov, V.A., Gol’din, V.D., and Pakhomov, F.M., Aerodinamika tel so vduvom (Aerodynamics of Bodies with Blowing), Tomsk: Tomsk. Gos. Univ., 1990.

    Google Scholar 

  14. Cebeci, T. and Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, New York: Springer, 1984.

    Book  MATH  Google Scholar 

  15. Chen, K.K. and Thyson, N.A., AIAA J., 1971, vol. 9, no. 5, p. 821.

    Article  ADS  Google Scholar 

  16. Grishin, A.M., Bertsun, V.N., and Zinchenko, V.I., Iteratsionno-interpolyatsionnyi metod i ego prilozheniya (Iteration–Interpolation Method and Its Applications), Tomsk: Tomsk. Gos. Univ., 1981.

    MATH  Google Scholar 

  17. Petukhov, I.V., Numerical calculation of two-dimensional flow in the boundary layer, in Chislennye metody resheniya differentsial’nykh i integral’nykh uravnenii i kvadraturnye formuly (Numerical Methods for Solving Differential and Integral Equations and Quadrature Formulas), Moscow: Nauka, 1964, p. 304.

    Google Scholar 

  18. Gadzhiev, A.D., Pisarev, V.N., and Shestakov, A.A., USSR Computational Mathematics and Mathematical Physics, 1982, vol. 22, no. 2, p. 339.

    Google Scholar 

  19. Nesmelov, V.V., Combust., Explos. Shock Waves (Engl. Transl.), 1993, vol. 29, no. 6, p. 714.

  20. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., and Solntsev, S.S., Ross. Khim. Zh., 2010, vol. 54, no. 1, p. 20.

    Google Scholar 

  21. Hunter, L.W., Perini, L.L., Conn, D.W., and Brenza, P.T., J. Spacecr. Rockets, 1986, vol. 23, no. 5, p. 487.

    Article  ADS  Google Scholar 

  22. Anfimov, N.A. and Al’tov, V.V., Teplofiz. Vys. Temp., 1965, no. 3, p. 409.

  23. Mugalev, V.P., Some issues of the effect of injection on a turbulent boundary layer, in Turbulentnye techeniya (Turbulent Flows), Moscow: Nauka, 1970, p. 87.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Tomsk State University competitiveness improvement program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zverev.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinchenko, V.I., Gol’din, V.D. & Zverev, V.G. Numerical Modeling of the Influence of Thermal Protection Materials on Characteristics of Conjugate Heat and Mass Transfer with Spatial Flow around Blunted Bodies. High Temp 56, 719–726 (2018). https://doi.org/10.1134/S0018151X18040223

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18040223

Keywords

Navigation