Functional Surfaces with Enhanced Heat Transfer for Spray Cooling Technology

Abstract

In this study the effects of nano/microstructuring and surface chemistry on wettability, evaporation rate and the Leidenfrost temperature are experimentally investigated. The functional surfaces with two alternative patterns were originally fabricated via direct femtosecond laser surface processing of polished silicon wafer in air at a fluence slightly above ablation threshold. The droplet lifetime method was used to measure the evaporation rate of a water droplet (4.5 μL) at surface temperatures of 25–350°C and to determine the Leidenfrost temperature. Generally, after processing the functional surfaces with hierarchical surface morphology demonstrate enhanced wetting behavior, evaporation rate enhancement and positive shifts in the Leidenfrost temperature. The functional surfaces with a microgrooved surface pattern, extensively covered by flake-like nanostructures, exhibit strong superhydrophilicity, resulted in a significant temperature-dependent enhancement of evaporation rate (up to 6 times) and an increase of about 30°C in the Leidenfrost temperature relative to the polished surface. The functional surfaces with a microcratered surface pattern being only hydrophilic demonstrate a nearly twofold temperature-independent enhancement of evaporation rate. Thermostability tests showed the heating of the functional surfaces above 340°C to be resulted in a drastically deteriorated wettability and a reduction of evaporative heat transfer performance under repeated experiments.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Int. J. Heat Mass Transfer 2014, vol. 82, p. 109.

    Article  Google Scholar 

  2. 2.

    Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Langmuir 2013, vol. 29, p. 9798.

    Article  Google Scholar 

  3. 3.

    Frysali, M.A., Papoutsakis, L., Kenanakis, G., and Anastasiadis, S.H., J. Phys. Chem. C, 2015, vol. 119, no. 45, p. 25401.

    Article  Google Scholar 

  4. 4.

    Stratakis, E., Mateescu, A., Barberoglou, M., Vamvakaki, M., Fotakis, C., and Anastasiadis, S.H., Chem. Commun. 2010, vol. 46, p. 4136.

    Article  Google Scholar 

  5. 5.

    Zhang, X., Liu, H., Huang, X., and Jiang, H., J. Mater. Chem. C, 2015, vol. 3, p. 3336.

    Article  Google Scholar 

  6. 6.

    Matsuda, T., Sano, T., Arakawa, K., and Hirose, A., Appl. Phys. Lett. 2014, vol. 105, 021902.

    ADS  Article  Google Scholar 

  7. 7.

    Matsuda, T., Sano, T., Arakawa, K., and Hirose, A., J. Appl. Phys., 2014, vol. 116, 183506.

    Article  Google Scholar 

  8. 8.

    Vorobyev, A. and Guo, C., Laser Photonics Rev. 2013, vol. 7, no. 3, p. 385.

    Article  Google Scholar 

  9. 9.

    Rodriguez, R. and Redman, R., J. Exp. Bot., 2008, vol. 59, no. 5, p. 1109.

    Article  Google Scholar 

  10. 10.

    Otten, A. and Herminghaus, S., Langmuir 2004, vol. 20, p. 2405.

    Article  Google Scholar 

  11. 11.

    Neinhuis, C. and Barthlott, W., Ann. Bot. (Oxford, U.K.) 1997, vol. 79, no. 6, p. 667.

    Article  Google Scholar 

  12. 12.

    Vorobyev, A. and Guo, C., J. Appl. Phys., 2015, vol. 117, 033103.

    ADS  Article  Google Scholar 

  13. 13.

    Vorobyev, A.Y. and Guo, C., Opt. Express 2010, vol. 18, no. 7, p. 6456.

    ADS  Article  Google Scholar 

  14. 14.

    Zorba, V., Persano, L., Pisignano, D., Athanassiou, A., Stratakis, E., Cingolani, R., Tzanetakis, P., and Fotakis, C., Nanotecnology 2006, vol. 17, p. 3234.

    ADS  Article  Google Scholar 

  15. 15.

    Paradisanos, I., Fotakis, C., Anastasiadis, S.H., and Stratakis, E., Appl. Phys. Lett. 2015, vol. 107, 111603.

    ADS  Article  Google Scholar 

  16. 16.

    Baldacchini, T., Carey, J.E., Zhou, M., and Mazur, E., Langmuir 2006, vol. 22, no. 11, p. 4917.

    Article  Google Scholar 

  17. 17.

    Barberoglou, M., Zorba, V., Stratakis, E., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H., and Fotakis, C., Appl. Surf. Sci. 2009, vol. 255, p. 5425.

    ADS  Article  Google Scholar 

  18. 18.

    Cottin-Bizonne, C., Barrat, J.L., Bocquet, L., and Charlaix, E., Nat. Mater. 2003, vol. 2, p. 237.

    ADS  Article  Google Scholar 

  19. 19.

    Koch, K., Bhushan, B., and Barthlott, W., Prog. Mater. Sci. 2009, vol. 54, p. 137.

    Article  Google Scholar 

  20. 20.

    Genzer, J. and Efimenko, K., Biofouling 2006, vol. 22, p. 339.

    Article  Google Scholar 

  21. 21.

    Gholaminejad, A. and Hosseini, R., J. Electron. Cool. Therm. Control, 2013, vol. 3, p. 1.

    ADS  Article  Google Scholar 

  22. 22.

    Celia, E., Darmanin, T., Taffin de Givenchy, E., Amigoni, S., and Guittard, F., J. Colloid Interface Sci. 2013, vol. 402, p. 1.

    ADS  Article  Google Scholar 

  23. 23.

    Xi, J., Feng, L., and Jiang, L., Appl. Phys. Lett. 2008, vol. 92, 053102.

    ADS  Article  Google Scholar 

  24. 24.

    Gottfried, B.S., Lee, C.J., and Bell, K.J., Int. J. Heat Mass Transfer 1966, vol. 9, p. 1167.

    Article  Google Scholar 

  25. 25.

    Romashevskiy, S.A., Agranat, M.B., and Dmitriev, A.S., High Temp. 2016, vol. 54, no. 3, p. 461.

    Article  Google Scholar 

  26. 26.

    Quéré, D., Annu. Rev. Fluid Mech. 2013, vol. 45, p. 197.

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Liu, G. and Craig, V.S., Faraday Discuss. 2010, vol. 146, p. 141.

    ADS  Article  Google Scholar 

  28. 28.

    Bernardin, J.D. and Mudawar, I., Int. J. Heat Mass Transfer 1997, vol. 40, p. 2579.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Romashevskiy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romashevskiy, S.A., Ovchinnikov, A.V. Functional Surfaces with Enhanced Heat Transfer for Spray Cooling Technology. High Temp 56, 255–262 (2018). https://doi.org/10.1134/S0018151X18020244

Download citation

Keywords

  • femtosecond laser
  • silicon
  • wettability
  • superhydrophilicity
  • superhydrophobicity
  • evaporation rate
  • heat transfer
  • thermal training