Advertisement

High Temperature

, Volume 56, Issue 2, pp 309–311 | Cite as

CFD Simulation of Twin Thermoacoustic Prime Mover for Binary Gas Mixtures

  • N. M. Hariharan
  • P. Sivashanmugam
Short Communications
  • 13 Downloads

Abstract

The objective of the present simulation is to analyze the performance of a twin thermoacoustic prime mover using CFD in terms of frequency and pressure amplitude. Pure fluid media such as helium, argon, nitrogen and their binary gas mixtures are studied at a constant operating pressure of 5 bar. The GAMBIT 2.3.16 pre-processor is used for creating the geometry of twin prime mover and the CFD package FLUENT 6.3 is used for simulating the device with different combinations of gas mixtures. The geometrical parameters and temperature gradients across the stack are kept constant throughout the simulation. It is found that the pressure amplitude of the thermoacoustic oscillations is higher for pure argon, whereas the frequency of the oscillations is higher for helium (495 Hz) rather than other gases and mixtures.

Keywords

twin thermoacoustic prime mover binary gas mixture frequency pressure amplitude CFD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rayleigh, J.W.S and Lindsay, R.B., The Theory of Sound, New York: Dover 1945, vol. 2.Google Scholar
  2. 2.
    Lycklama, J.A., Nijeholt, A., Tijani, M.E.H., and Spoelstra, S., J. Acoust. Soc. Am., 2005, vol. 118, no. 4, p. 2265.ADSCrossRefGoogle Scholar
  3. 3.
    Hantschk, C.C. and Vortmeyer, D., J. Sound Vib., 1999, vol. 277, no. 9, p. 758.Google Scholar
  4. 4.
    Zink, F., Vipperman, J., and Schaefer, L., Int. Commun. Heat Mass Transfer 2009, vol. 37, no. 30, p. 226.Google Scholar
  5. 5.
    Hariharan, N.M., Sivashanmugam, P., and Kasthurirengan, S., Int. J. Heat Mass Transfer 2013, vol. 64, no. 9, p. 1183.CrossRefGoogle Scholar
  6. 6.
    Hariharan, N.M., Sivashanmugam, P., and Kasthurirengan, S., Int. J. Refrigeration 2013, vol. 36, no. 8, p. 2420.CrossRefGoogle Scholar
  7. 7.
    Jabbar, P., Hariharan, N.M., Sivashanmugam, P., and Kasthurirengan, S., Eng. Comput. 2016, vol. 33, no. 3, p. 759.CrossRefGoogle Scholar
  8. 8.
    Liu, J. and Garrett, S.L., J. Acoust. Soc. Am., 2005, vol. 119, no. 3, p. 1457.CrossRefGoogle Scholar
  9. 9.
    Zink, F., Identification and Attenuation of Losses in Thermoacoustics: Issues Arising in the Miniaturization of Thermoacoustic Devices, Ph.D. (Mech. Eng.) Thesis, Pittsburg: Univ. Pittsburgh, 2009.Google Scholar
  10. 10.
    Hao, X.H., Ju, Y.L., Upendra, Behera, and Kasthurirengan, S., Cryogenics 2011, vol. 51, no. 9, p. 559.ADSCrossRefGoogle Scholar
  11. 11.
    Tijani, M.E.H., Zeegers, J.C.H., and de Waele, A.T.A.M., J. Acoust. Soc. Am., 2002, vol. 112, no. 1, p. 134.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of BiotechnologySree Sastha Institute of Engineering and TechnologyChembarambakkam, ChennaiIndia
  2. 2.Department of Chemical EngineeringNational Institute of TechnologyTiruchirapalliIndia

Personalised recommendations