Advertisement

High Temperature

, Volume 56, Issue 2, pp 193–200 | Cite as

Determination of Opaque Material Temperature from the Spectral Distribution of Emitted Radiation Intensity with Unknown Emissivity

  • S. P. Rusin
Thermophysical Properties of Materials
  • 10 Downloads

Abstract

The thermodynamic temperature of an opaque material with unknown emissivity was determined from the recorded distribution of spectral intensities of the emitted radiation. The initial system of equations was derived in the logarithmic form in accordance with the Planck formula. At the first stage, the spectral dependence of the material emissivity was investigated with a special function—relative emissivity. Based on the analysis of spectral dependences of this function at different reference temperatures, a parametric model for the material emissivity was chosen. At the second stage, the desired parameters of the chosen model of spectral emissivity and the thermodynamic temperature of the material were determined. An example of the determination of a temperature of a tungsten sample from the spectral distribution of emitted radiation intensities is given. A method for narrowing the range, which includes the thermodynamic temperature of the material, is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Radiometric Temperature Measurements: I. Fundamentals Experimental Methods in the Physical Sciences, Zhang, Z.M., Tsai, B.K., and Mashin, G., Eds., Elsevier 2009, vol. 42.Google Scholar
  2. 2.
    Onufriev, S.V. and Savvatimskii, A.I., High Temp. 2016, vol. 54, no. 4, p. 510.CrossRefGoogle Scholar
  3. 3.
    Svet, D.Ya., Opticheskie metody izmereniya istinnykh temperatur (Optical Methods for Measuring True Temperatures), Moscow: Nauka, 1982.Google Scholar
  4. 4.
    Snopko, V.N., Osnovy metodov pirometrii po spektru teplovogo izlucheniya (Fundamentals of Pyrometry Based on the Spectrum of Thermal Radiation), Minsk: Inst. Fiz. im. B.I. Stepanova, Nats. Akad. Nauk Belarusi 1999.Google Scholar
  5. 5.
    Leonov, A.S. and Rusin, S.P., Thermophys. Aeromech. 2001, vol. 8, no. 3, p. 443.Google Scholar
  6. 6.
    Kalitkin, N.N., Chislennye metody (Numerical Methods), Moscow: Nauka, 1978.Google Scholar
  7. 7.
    Tikhonov, A.N., Leonov, A.S., and Yagola, A.G., Nelineinye nekorrektnye zadachi (Nonlinear Ill-Posed Problems), Moscow: Nauka 1995.zbMATHGoogle Scholar
  8. 8.
    Rusin, S.P., Thermophys. Aeromech. 2011, vol. 18, no. 4, p. 603.ADSCrossRefGoogle Scholar
  9. 9.
    Rusin, S.P., Thermophys. Aeromech. 2013, vol. 20, no. 5, p. 631.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fikhtengol’ts, G.M., Kurs differentsial’nogo i integral’nogo ischisleniya (Course of Differential and Integral Calculus), 3vols., Moscow: Nauka 1966, vol. 1.Google Scholar
  11. 11.
    Rusin, S.P., J. Phys.: Conf. Ser., 2015, vol. 653, 012102. http://dx.doi.org/10.1088/1742–6596/653/1/012102Google Scholar
  12. 12.
    Larrabee, R.D., J. Opt. Soc. Am., 1959, vol. 49, no. 6, p. 619.ADSCrossRefGoogle Scholar
  13. 13.
    Kirenkov, I.I., Metrologicheskie osnovy opticheskoi pirometrii (Metrological Foundations of Optical Pyrometry), Moscow: Izd. Standartov, 1976.Google Scholar
  14. 14.
    Girard, F., Battuello, M., and Florio, M., Int. J. Thermophys. 2014, vol. 35, p. 1401.ADSCrossRefGoogle Scholar
  15. 15.
    Latyev, L.N., Petrov, V.A., Chekhovskoi, V.Ya., and Shestakov, E.N., Izluchatel’nye svoistva tverdykh materialov. Spravochnik (Radiative Properties of Solid Materials: A Reference Book), Sheindlin, A.E., Ed., Moscow: Energiya 1974.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations