Skip to main content
Log in

Effect of Elastic Collisions on the Ion Distribution Function in Parent Gas Discharge Plasma

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

An analytical solution is obtained for the Boltzmann kinetic equation for ions in the plasma of its gas with allowance for the processes of resonant charge exchange and elastic ion scattering on the atom. The cross section of differential elastic scattering was assumed to be isotropic in the system of the mass center, and the resonant charge exchange process is independent of the elastic scattering. It is shown that the ion velocity distribution function is determined by two parameters and differs significantly from the Maxwellian one. The allowance for elastic scattering with these assumptions leads to a change in the ion angular distribution and also to a decrease in the average ion energy due to the transfer of part of the ion energy to atoms upon elastic collisions. The calculated values of the drift velocity, the average energy, and the coefficient of transverse diffusion of He+ ions in He, Ar+ ions in Ar are compared with the known experimental data and the results of Monte Carlo calculations; they show good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ivanov, Yu.A. and Polak, L.S., Energy distribution of electrons in a low-temperature plasma, in Khimiya plazmy (Chemistry of Plasma), Smirnov, B.M., Ed., Moscow: Atomizdat 1975, no. 2, p. 161.

    Google Scholar 

  2. Sena, L.A., Zh. Eksp. Tekh. Fiz. 1946, vol. 16, p. 734.

    Google Scholar 

  3. Kagan, Yu.M. and Perel’, V.I., Dokl. Akad. Nauk SSSR 1954, vol. 98, p. 575.

    Google Scholar 

  4. Kagan, Yu.M. and Perel’, V.I., Zh. Eksp. Tekh. Fiz. 1955, vol. 29, p. 884.

    Google Scholar 

  5. Smirnov, B.M., Zh. Tekh. Fiz. 1966, vol. 36, p. 1864.

    Google Scholar 

  6. Perel’, V.I., Zh. Eksp. Tekh. Fiz. 1957, vol. 32, p. 526.

    Google Scholar 

  7. Fok, V.A., Zh. Eksp. Tekh. Fiz. 1948, vol. 18, p. 1048.

    Google Scholar 

  8. Golant, V.E., Zhilinskii, A.P., and Sakharov, S.A., Osnovy fiziki plazmy (Fundamentals of Plasma Physics), Moscow: Atomizdat 1977.

    Google Scholar 

  9. Ender, A.Ya. and Ender, I.A., Tech. Phys. 2010, vol. 55, no. 2, p. 166.

    Article  Google Scholar 

  10. Ender, A.Ya. and Ender, I.A., Tech. Phys. 2010, vol. 55, no. 2, p. 176.

    Article  Google Scholar 

  11. Else, D., Kompaneets, R., and Vladimirov, S.V., Phys. Plasmas 2009, vol. 16, 062106.

    Article  ADS  Google Scholar 

  12. Bhatnagar, P.L., Gross, E.P., and Krook, M., Phys. Rev. 1954, vol. 94, p. 511.

    Article  ADS  Google Scholar 

  13. Larry, A.V. and Mason, E.A., Ann. Phys. 1975, vol. 91, p. 499.

    Article  ADS  Google Scholar 

  14. Mustafaev, A.S., Sukhomlinov, V.S., and Ainov, M.A., Tech. Phys. 2015, vol. 60, no. 12, p. 1778.

    Article  Google Scholar 

  15. Mustafaev, A.S., Sukhomlinov, V.S., and Ainov, M.A., High Temp. 2017, vol. 55, no. 4, p. 481.

    Article  Google Scholar 

  16. Israel, D., Riemann, K.-U., and Tsendin, L., J. Appl. Phys., 2006, vol. 99, 093303.

    Article  ADS  Google Scholar 

  17. O’Connell, D., Zorat, A.R., Ellingboe, A.R., and Turner, M.M., Phys. Plasmas 2007, vol. 14, 103510.

    Article  ADS  Google Scholar 

  18. Chen, W.C., Zhu, X.M., Zhang, S., and Pu, Y.K., Appl. Phys. Lett. 2009, vol. 94, 211503.

    Article  ADS  Google Scholar 

  19. Smirnov, B.M. and Tereshonok, D.V., High Temp. 2014, vol. 52, no. 6, p. 781.

    Article  Google Scholar 

  20. Shakhatov, V.A., Mavlyudov, T.B., and Lebedev, Yu.A., High Temp. 2013, vol. 51, no. 4, p. 551.

    Article  Google Scholar 

  21. Mustafaev, A.S., Mezentsev, A.P., and Simonov, V.Ya., Zh. Tekh. Fiz. 1984, vol. 54, p. 2153.

    Google Scholar 

  22. Mustafaev, A.S. and Grabovskii, A.Yu., High Temp. 2012, vol. 50, no. 6, p. 785.

    Article  Google Scholar 

  23. Lapshin, V.F. and Mustafaev, A.S., Zh. Tekh. Fiz. 1989, vol. 59, no. 2, p. 35.

    Google Scholar 

  24. Mustafaev, A.S., Sukhomlinov, V.S., and Ainov, M.A., High Temp. 2017, vol. 55, no. 3, p. 346.

    Article  Google Scholar 

  25. Vestal, M.L., Blakley, R., and Futrell, J.H., Phys. Rev. A: At., Mol., Opt. Phys. 1978, vol. 17, no. 4, p. 1337.

    Article  ADS  Google Scholar 

  26. Jovanovic, J.V., Vrhovac, S.B., and Petrovic, Z.Lj., Eur. Phys. J. D 2002, vol. 21, p. 335.

    Article  ADS  Google Scholar 

  27. Sejkora, G., Girstmair, P., Bryant, H.C., and Mark, T.D., Phys. Rev. A: At., Mol., Opt. Phys. 1984, vol. 29, no. 6, p. 3379.

    Article  ADS  Google Scholar 

  28. Stefansson, T. and Skullerud, H.R., J. Phys. B: At., Mol. Opt. Phys. 1999, vol. 32, p. 1057.

    Article  ADS  Google Scholar 

  29. Stefansson, T., Berge, T., Lausund, R., and Skullerud, H.R., J. Phys. D: Appl. Phys., 1988, vol. 21, p. 1359.

    Article  ADS  Google Scholar 

  30. Viehland, L.A. and Hesche, M., Chem. Phys. 1986, vol. 110, p. 41.

    Article  ADS  Google Scholar 

  31. Lin, S.L., Viehland, L.A., and Mason, E.A., Chem. Phys. 1979, vol. 37, p. 411.

    Article  ADS  Google Scholar 

  32. Wadman, M., Mason, E.A., and Viehland, L.A., Chem. Phys. 1982, vol. 66, no. 3, p. 339.

    Article  ADS  Google Scholar 

  33. Wadman, M. and Mason, E.A., Chem. Phys. 1981, vol. 58, no. 1, p. 121.

    Article  ADS  Google Scholar 

  34. Marchuk, G.I., Metody rascheta yadernykh reaktorov (Methods for Calculating Nuclear Reactors), Moscow: Gos. Izd. Lit. v Oblasti Atomnoi Nauki Tekh., 1981.

    Google Scholar 

  35. Barata, J.A.S., Nucl. Instrum. Methods Phys. Res., Sect. A 2007, vol. 580, p. 14.

    Article  ADS  Google Scholar 

  36. Vahedi, V. and Surendra, M., Comput. Phys. Commun. 1995, vol. 87, p. 179.

    Article  ADS  Google Scholar 

  37. Lampe, M., Röcker, T.B., Joyce, G., Zhdanov, S.K., Ivlev, A.V., and Morfill, G.E., Phys. Plasmas 2012, vol. 19, 113703.

    Article  ADS  Google Scholar 

  38. McDaniel, E. and Mason, E., The Mobility and Diffusion of Ions in Gases, New York: Wiley, 1973.

    Google Scholar 

  39. Kevin, F.N. and Larry, A.V., Chem. Phys. 1990, vol. 148, p. 255.

    Article  ADS  Google Scholar 

  40. Smirnov, B.M., Iony i vozbuzhdennye atomy v plazme (Ions and Excited Atoms in Plasma), Moscow: Atomizdat, 1974.

    Google Scholar 

  41. Vestal, M.L., Blakley, R., and Futrell, J.H., Phys. Rev. A: At., Mol., Opt. Phys. 1978, vol. 17, no. 4, p. 1321.

    Article  ADS  Google Scholar 

  42. Maiorov, S.A., in Tr. XXXIV Mezhdun. konf. po fizike plazmy i UTS (Proc. XXXIV Int. Conf. on Plasma Phys. and Controlled Fusion), Zvenigorod 2007, p. 86.

    Google Scholar 

  43. Smirnov, B.M., Phys.—Usp. 2001, vol. 44, no. 3, p. 221.

    Article  ADS  Google Scholar 

  44. Hornbeck, A., Phys. Rev. 1951, vol. 84, p. 615.

    Article  ADS  Google Scholar 

  45. Madson, J.M. and Oskam, H.J., Phys. Lett. A 1967, vol. 25, p. 407.

    Article  ADS  Google Scholar 

  46. Ellis, H.W., Pai, R.Y., McDaniel, E.W., Mason, E.A., and Viehland, L.A., At. Data Nucl. Data Tables 1976, vol. 17, p. 177.

    Article  ADS  Google Scholar 

  47. Barata, J.A.S. and Conde, C.A.N., Nucl. Instrum. Methods Phys. Res., Sect. A 2010, vol. 619, p. 21.

    Article  ADS  Google Scholar 

  48. Schiestl, B., Sejkora, W., Lezius, M., Foltin, M., and Mark, T.D., in Proc 8th Int. Seminar on Electron and Ion Swarm, Trondheim 1993, p. 65.

    Google Scholar 

  49. Skullerud, H.R. and Larsen, P.H., J. Phys. B: At., Mol. Opt. Phys. 1990, vol. 23, p. 1017.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mustafaev.

Additional information

Original Russian Text © A.S. Mustafaev, V.O. Nekuchaev, V.S. Sukhomlinov, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 2, pp. 168–179.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafaev, A.S., Nekuchaev, V.O. & Sukhomlinov, V.S. Effect of Elastic Collisions on the Ion Distribution Function in Parent Gas Discharge Plasma. High Temp 56, 162–172 (2018). https://doi.org/10.1134/S0018151X18020165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18020165

Navigation