High Temperature

, Volume 56, Issue 2, pp 162–172 | Cite as

Effect of Elastic Collisions on the Ion Distribution Function in Parent Gas Discharge Plasma

  • A. S. Mustafaev
  • V. O. Nekuchaev
  • V. S. Sukhomlinov
Plasma Investigations
  • 8 Downloads

Abstract

An analytical solution is obtained for the Boltzmann kinetic equation for ions in the plasma of its gas with allowance for the processes of resonant charge exchange and elastic ion scattering on the atom. The cross section of differential elastic scattering was assumed to be isotropic in the system of the mass center, and the resonant charge exchange process is independent of the elastic scattering. It is shown that the ion velocity distribution function is determined by two parameters and differs significantly from the Maxwellian one. The allowance for elastic scattering with these assumptions leads to a change in the ion angular distribution and also to a decrease in the average ion energy due to the transfer of part of the ion energy to atoms upon elastic collisions. The calculated values of the drift velocity, the average energy, and the coefficient of transverse diffusion of He+ ions in He, Ar+ ions in Ar are compared with the known experimental data and the results of Monte Carlo calculations; they show good agreement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ivanov, Yu.A. and Polak, L.S., Energy distribution of electrons in a low-temperature plasma, in Khimiya plazmy (Chemistry of Plasma), Smirnov, B.M., Ed., Moscow: Atomizdat 1975, no. 2, p. 161.Google Scholar
  2. 2.
    Sena, L.A., Zh. Eksp. Tekh. Fiz. 1946, vol. 16, p. 734.Google Scholar
  3. 3.
    Kagan, Yu.M. and Perel’, V.I., Dokl. Akad. Nauk SSSR 1954, vol. 98, p. 575.Google Scholar
  4. 4.
    Kagan, Yu.M. and Perel’, V.I., Zh. Eksp. Tekh. Fiz. 1955, vol. 29, p. 884.Google Scholar
  5. 5.
    Smirnov, B.M., Zh. Tekh. Fiz. 1966, vol. 36, p. 1864.Google Scholar
  6. 6.
    Perel’, V.I., Zh. Eksp. Tekh. Fiz. 1957, vol. 32, p. 526.Google Scholar
  7. 7.
    Fok, V.A., Zh. Eksp. Tekh. Fiz. 1948, vol. 18, p. 1048.Google Scholar
  8. 8.
    Golant, V.E., Zhilinskii, A.P., and Sakharov, S.A., Osnovy fiziki plazmy (Fundamentals of Plasma Physics), Moscow: Atomizdat 1977.Google Scholar
  9. 9.
    Ender, A.Ya. and Ender, I.A., Tech. Phys. 2010, vol. 55, no. 2, p. 166.CrossRefGoogle Scholar
  10. 10.
    Ender, A.Ya. and Ender, I.A., Tech. Phys. 2010, vol. 55, no. 2, p. 176.CrossRefGoogle Scholar
  11. 11.
    Else, D., Kompaneets, R., and Vladimirov, S.V., Phys. Plasmas 2009, vol. 16, 062106.ADSCrossRefGoogle Scholar
  12. 12.
    Bhatnagar, P.L., Gross, E.P., and Krook, M., Phys. Rev. 1954, vol. 94, p. 511.ADSCrossRefGoogle Scholar
  13. 13.
    Larry, A.V. and Mason, E.A., Ann. Phys. 1975, vol. 91, p. 499.ADSCrossRefGoogle Scholar
  14. 14.
    Mustafaev, A.S., Sukhomlinov, V.S., and Ainov, M.A., Tech. Phys. 2015, vol. 60, no. 12, p. 1778.CrossRefGoogle Scholar
  15. 15.
    Mustafaev, A.S., Sukhomlinov, V.S., and Ainov, M.A., High Temp. 2017, vol. 55, no. 4, p. 481.CrossRefGoogle Scholar
  16. 16.
    Israel, D., Riemann, K.-U., and Tsendin, L., J. Appl. Phys., 2006, vol. 99, 093303.ADSCrossRefGoogle Scholar
  17. 17.
    O’Connell, D., Zorat, A.R., Ellingboe, A.R., and Turner, M.M., Phys. Plasmas 2007, vol. 14, 103510.ADSCrossRefGoogle Scholar
  18. 18.
    Chen, W.C., Zhu, X.M., Zhang, S., and Pu, Y.K., Appl. Phys. Lett. 2009, vol. 94, 211503.ADSCrossRefGoogle Scholar
  19. 19.
    Smirnov, B.M. and Tereshonok, D.V., High Temp. 2014, vol. 52, no. 6, p. 781.CrossRefGoogle Scholar
  20. 20.
    Shakhatov, V.A., Mavlyudov, T.B., and Lebedev, Yu.A., High Temp. 2013, vol. 51, no. 4, p. 551.CrossRefGoogle Scholar
  21. 21.
    Mustafaev, A.S., Mezentsev, A.P., and Simonov, V.Ya., Zh. Tekh. Fiz. 1984, vol. 54, p. 2153.Google Scholar
  22. 22.
    Mustafaev, A.S. and Grabovskii, A.Yu., High Temp. 2012, vol. 50, no. 6, p. 785.CrossRefGoogle Scholar
  23. 23.
    Lapshin, V.F. and Mustafaev, A.S., Zh. Tekh. Fiz. 1989, vol. 59, no. 2, p. 35.Google Scholar
  24. 24.
    Mustafaev, A.S., Sukhomlinov, V.S., and Ainov, M.A., High Temp. 2017, vol. 55, no. 3, p. 346.CrossRefGoogle Scholar
  25. 25.
    Vestal, M.L., Blakley, R., and Futrell, J.H., Phys. Rev. A: At., Mol., Opt. Phys. 1978, vol. 17, no. 4, p. 1337.ADSCrossRefGoogle Scholar
  26. 26.
    Jovanovic, J.V., Vrhovac, S.B., and Petrovic, Z.Lj., Eur. Phys. J. D 2002, vol. 21, p. 335.ADSCrossRefGoogle Scholar
  27. 27.
    Sejkora, G., Girstmair, P., Bryant, H.C., and Mark, T.D., Phys. Rev. A: At., Mol., Opt. Phys. 1984, vol. 29, no. 6, p. 3379.ADSCrossRefGoogle Scholar
  28. 28.
    Stefansson, T. and Skullerud, H.R., J. Phys. B: At., Mol. Opt. Phys. 1999, vol. 32, p. 1057.ADSCrossRefGoogle Scholar
  29. 29.
    Stefansson, T., Berge, T., Lausund, R., and Skullerud, H.R., J. Phys. D: Appl. Phys., 1988, vol. 21, p. 1359.ADSCrossRefGoogle Scholar
  30. 30.
    Viehland, L.A. and Hesche, M., Chem. Phys. 1986, vol. 110, p. 41.ADSCrossRefGoogle Scholar
  31. 31.
    Lin, S.L., Viehland, L.A., and Mason, E.A., Chem. Phys. 1979, vol. 37, p. 411.ADSCrossRefGoogle Scholar
  32. 32.
    Wadman, M., Mason, E.A., and Viehland, L.A., Chem. Phys. 1982, vol. 66, no. 3, p. 339.ADSCrossRefGoogle Scholar
  33. 33.
    Wadman, M. and Mason, E.A., Chem. Phys. 1981, vol. 58, no. 1, p. 121.ADSCrossRefGoogle Scholar
  34. 34.
    Marchuk, G.I., Metody rascheta yadernykh reaktorov (Methods for Calculating Nuclear Reactors), Moscow: Gos. Izd. Lit. v Oblasti Atomnoi Nauki Tekh., 1981.Google Scholar
  35. 35.
    Barata, J.A.S., Nucl. Instrum. Methods Phys. Res., Sect. A 2007, vol. 580, p. 14.ADSCrossRefGoogle Scholar
  36. 36.
    Vahedi, V. and Surendra, M., Comput. Phys. Commun. 1995, vol. 87, p. 179.ADSCrossRefGoogle Scholar
  37. 37.
    Lampe, M., Röcker, T.B., Joyce, G., Zhdanov, S.K., Ivlev, A.V., and Morfill, G.E., Phys. Plasmas 2012, vol. 19, 113703.ADSCrossRefGoogle Scholar
  38. 38.
    McDaniel, E. and Mason, E., The Mobility and Diffusion of Ions in Gases, New York: Wiley, 1973.Google Scholar
  39. 39.
    Kevin, F.N. and Larry, A.V., Chem. Phys. 1990, vol. 148, p. 255.ADSCrossRefGoogle Scholar
  40. 40.
    Smirnov, B.M., Iony i vozbuzhdennye atomy v plazme (Ions and Excited Atoms in Plasma), Moscow: Atomizdat, 1974.Google Scholar
  41. 41.
    Vestal, M.L., Blakley, R., and Futrell, J.H., Phys. Rev. A: At., Mol., Opt. Phys. 1978, vol. 17, no. 4, p. 1321.ADSCrossRefGoogle Scholar
  42. 42.
    Maiorov, S.A., in Tr. XXXIV Mezhdun. konf. po fizike plazmy i UTS (Proc. XXXIV Int. Conf. on Plasma Phys. and Controlled Fusion), Zvenigorod 2007, p. 86.Google Scholar
  43. 43.
    Smirnov, B.M., Phys.—Usp. 2001, vol. 44, no. 3, p. 221.ADSCrossRefGoogle Scholar
  44. 44.
    Hornbeck, A., Phys. Rev. 1951, vol. 84, p. 615.ADSCrossRefGoogle Scholar
  45. 45.
    Madson, J.M. and Oskam, H.J., Phys. Lett. A 1967, vol. 25, p. 407.ADSCrossRefGoogle Scholar
  46. 46.
    Ellis, H.W., Pai, R.Y., McDaniel, E.W., Mason, E.A., and Viehland, L.A., At. Data Nucl. Data Tables 1976, vol. 17, p. 177.ADSCrossRefGoogle Scholar
  47. 47.
    Barata, J.A.S. and Conde, C.A.N., Nucl. Instrum. Methods Phys. Res., Sect. A 2010, vol. 619, p. 21.ADSCrossRefGoogle Scholar
  48. 48.
    Schiestl, B., Sejkora, W., Lezius, M., Foltin, M., and Mark, T.D., in Proc 8th Int. Seminar on Electron and Ion Swarm, Trondheim 1993, p. 65.Google Scholar
  49. 49.
    Skullerud, H.R. and Larsen, P.H., J. Phys. B: At., Mol. Opt. Phys. 1990, vol. 23, p. 1017.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Mustafaev
    • 1
  • V. O. Nekuchaev
    • 2
  • V. S. Sukhomlinov
    • 3
  1. 1.St. Petersburg Mining UniversitySt. PetersburgRussia
  2. 2.Ukhta State Technical UniversityUkhtaRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations