Skip to main content
Log in

Solution of the Retrospective Inverse Heat Conduction Problem with Parametric Optimization

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The retrospective inverse heat conduction problem has been solved as a problem of optimal control of an object with distributed parameters. The initial ill-posed statement of the inverse problem is transformed into a conditionally well-posed one when the limitations imposed on the second derivative of the desired control, which corresponds to a reduction of the set of control actions to the class of continuous and continuously differentiable functions, are taken into account. Preliminary parameterization of the control actions makes it possible to formulate a mathematical programming problem, which can be solved based on the analytical method of minimax optimization with alternance specific features of the desired optimal temperature deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alifanov, O.M., Obratnye zadachi teploobmena (Inverse Heat Transfer Problems), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  2. Kabanikhin, S.I., Obratnye i nekorrektnye zadachi (Inverse and Ill-Posed Problems), Novosibirsk: Sibirsk. nauch. izd., 2009.

    Google Scholar 

  3. Alifanov, O.M., Artyukhin, E.A., and Rumyantsev, S.V., Ekstremal’nye metody resheniya nekorrektnykh zadach (Extreme Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1988.

    MATH  Google Scholar 

  4. Denisov, A.M., Vvedenie v teoriyu obratnykh zadach (Introduction to the Theory of Inverse Problems), Moscow: Mosk. Gos. Univ., 1994.

    Google Scholar 

  5. Vatul’yan, A.O., Obratnye zadachi v mekhanike deformiruemogo tverdogo tela (Inverse Problems in the Mechanics of a Deformable Solid), Moscow: Fizmatlit, 2007.

    Google Scholar 

  6. Kozlov, I.A. and Chugunov, V.A., Vestn. Kazansk. Gos. Tekh. Univ. im. A.N. Tupoleva, 2012, no. 2, p. 138.

    Google Scholar 

  7. Zainullov, A.R., Vestn. Samarsk. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2015, vol. 19, no. 4, p. 667.

    Article  Google Scholar 

  8. Samarskii, A.A., Vabishchevich, P.N., and Vasil’ev, V.I., Mat. Model., 1997, vol. 9, no. 5, p. 119.

    MathSciNet  Google Scholar 

  9. Eremeeva, M.S., Vestn. Sev. Vost. Fed. Univ., 2015, vol. 12, no. 1, p. 15.

    Google Scholar 

  10. Guseinov, Sh., Transp. Telecommun., 2004, vol. 5, no. 2.

    Google Scholar 

  11. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1979.

    MATH  Google Scholar 

  12. Lattes, R. and Lions, J.-L., Methode de Quasi-Réversibilité et Applications, Paris: Dunod, 1967.

    MATH  Google Scholar 

  13. Vabishchevich, P.N., Mat. Model., 1992, vol. 4, no. 5, p. 109.

    MathSciNet  Google Scholar 

  14. Stolyarov, E.P., Teplofiz. Vys. Temp., 2005, vol. 43, no. 1, p. 71.

    Google Scholar 

  15. Kolodziej, J., Mierzwiczak, M., and Cialkowski, M., Int. Commun. Heat Mass Transfer, 2010, vol. 37, no. 2, p. 121.

    Article  Google Scholar 

  16. Monde, M., Arima, H., Liu, W., Mitutake, Y., and Hammad, J.A., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 2135.

    Article  Google Scholar 

  17. Jonas, P. and Louis, A.K., Inverse Probl., 2000, vol. 16, p. 175.

    Article  ADS  Google Scholar 

  18. Anikonov, Yu.E., and Neshchadim, M.V., Vestn. Novosib. Gos. Univ., Ser. Mat., Mekh., Inf., 2011, vol. 11, no. 3, p. 20.

    Google Scholar 

  19. Butkovskii, A.G., Metody upravlenija sistemami s raspredelennymi parametrami (Methods for Managing Systems with Distributed Parameters), Moscow: Nauka, 1975.

    Google Scholar 

  20. Pleshivtceva, Yu.E. and Rapoport, E.Ya., Izv. Ross. Acad. Nauk, Teor. Syst. Upr., 2009, no. 3, p. 22.

    Google Scholar 

  21. Diligenskaya, Yu.E. and Rapoport, E.Ya., J. Eng. Phys. Therophys., 2014, vol. 87, no. 5, p. 1126.

    Article  Google Scholar 

  22. Rapoport, E.Ya., Al’ternansnyi metod v prikladnykh zadachakh optimizatsii (Alternance Method in Applied Optimization Problems), Moscow: Nauka, 2000.

    MATH  Google Scholar 

  23. Kartashov, E.M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical Methods in the Theory of the Thermal Conductivity of Solids), Moscow: Vysshaya Shkola, 2001.

    Google Scholar 

  24. Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (Automatic Control Theory), Moscow: Nauka, 1986.

    Google Scholar 

  25. Tsyrlin, A.M., Balakirev, V.S., and Dudnikov, E.G., Variatsionnye metody optimizatsii upravlyaemykh ob”ektov (Variational Methods for Optimizing Controlled Objects), Moscow: Energiya, 1976.

    Google Scholar 

  26. Rapoport, E.Ya. and Pleshivtceva, Yu.E., Izv. Ross. Akad. Nauk, Energ., 2002, no. 5, p. 144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Diligenskaya.

Additional information

Original Russian Text © A.N. Diligenskaya, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 3, pp. 399–406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diligenskaya, A.N. Solution of the Retrospective Inverse Heat Conduction Problem with Parametric Optimization. High Temp 56, 382–388 (2018). https://doi.org/10.1134/S0018151X18020050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18020050

Navigation