Advertisement

High Temperature

, Volume 56, Issue 2, pp 177–183 | Cite as

Joint Study of Temperature Dependences of Thermal Expansion and Heat Capacity of Solid Beryllium

  • V. Yu. Bodryakov
Thermophysical Properties of Materials
  • 29 Downloads

Abstract

This work presents the detailed joint study of temperature dependences of thermal expansion and heat capacity of solid beryllium. It is shown that, as for the earlier studied solid bodies, within the limits of experimental and statistical errors, the heat capacity C(T) and the temperature coefficient of volume expansion β(T) in the entire range of the HCP-phase of metal are in a pronounced correlation β(C) that has a typical (as earlier) “bilinear” form consisting of two smoothly conjugate linear sections with the up-fracture hitting the classical Dulong and Petit heat capacity limit 3R. The consistent values of the heat capacity obtained and the thermal expansion are tabulated and an estimate of the temperature dependence of the Grüneisen differential parameter γ′ ~ (∂β/∂C) is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Metal Beryllium, White, D.W. and Burke, J.E., Eds., Cleveland: Am. Soc. Metals, 1955.Google Scholar
  2. 2.
    Beryllium: Its Metallurgy and Properties, Hausner, H.H., Ed., Berkeley: University of California Press, 1965.Google Scholar
  3. 3.
    Papirov, I.I. and Tikhinskii, G.F., Fizicheskoe metallovedenie berilliya (Physical Metallurgy of Beryllium), Moscow: Atomizdat, 1968.Google Scholar
  4. 4.
    Beryllium Science and Technology, Webster, D., Ed., Heidelberg: Springer, 1979.Google Scholar
  5. 5.
    Drits, M.E., Budberg, P.B., Burkhanov, G.S., Drits, A.M., and Panovko, V.M., Svoistva elementov. Spravochnoe izdanie (Properties of Elements: A Reference Book), Drits, M.E., Ed., Moscow: Metallurgiya 1985.Google Scholar
  6. 6.
    Billone, M.C., Dalle, D.M., and Macaulay-Newcombe, R.G., Fusion Eng. Des. 1995, vol. 27, p. 179.CrossRefGoogle Scholar
  7. 7.
    Jacobson, L.A., MRS Bull., 1999, vol. 24, no. 2, p. 4.CrossRefGoogle Scholar
  8. 8.
    Petzow, G., Aldinger, F., Jönsson, S., and Preuss, O., Beryllium and beryllium compounds, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley 2005, p. 389.Google Scholar
  9. 9.
    Goldberg, A., Atomic, crystal, elastic, thermal, nuclear, and other properties of beryllium, Tech. Rep. UCRL-TR-224850, Section II, Livermore, CA: Univ. of California, Lawrence Livermore National Lab., 2006.CrossRefGoogle Scholar
  10. 10.
    Sernyaev, G.A., Berillii—Material YaRD i YaEU kosmicheskogo naznacheniya (Beryllium: A Material for Nuclear Jet Engines and Space Nuclear Power Plants), Ekaterinburg: Goshchitskii, 2007.Google Scholar
  11. 11.
    Beryllium Chemistry and Processing, Vidal, E.E., Goldberg, A., Dalder, E.N.C., Olson, D.L., and Mishra, B., Eds., Materials Park, OH: ASM Int., 2009.Google Scholar
  12. 12.
    Chou, M.Y., Lam, P.K., and Cohen, M.L., Phys. Rev. B: Condens. Matter Mater. Phys. 1983, vol. 28, no. 8, p. 4179.ADSCrossRefGoogle Scholar
  13. 13.
    Lam, P.K., Chou, M.Y., and Cohen, M.L., J. Phys. C: Solid State Phys., 1984, vol. 17, no. 12, p. 2065.ADSCrossRefGoogle Scholar
  14. 14.
    Robert, G. and Sollier, A., J. Phys. IV, 2006, vol. 134, p. 257.Google Scholar
  15. 15.
    Song, H.-F. and Liu, H.-F., Phys. Rev. B: Condens. Matter Mater. Phys. 2007, vol. 75, no. 24, 245126.ADSCrossRefGoogle Scholar
  16. 16.
    Kádas, K., Vitos, L., Ahuja, R., Johansson, B., and Kollár, J., Phys. Rev. B: Condens. Matter Mater. Phys. 2007, vol. 76, no. 23, 235109.ADSCrossRefGoogle Scholar
  17. 17.
    Benedict, L.X., Ogitsu, T., Trave, A., Wu, C.J., Sterne, P.A., and Schwegler, E., Phys. Rev. B: Condens. Matter Mater. Phys. 2009, vol. 79, no. 6, 064106.ADSCrossRefGoogle Scholar
  18. 18.
    Robert, G., Legrand, P., and Bernard, S., Phys. Rev. B: Condens. Matter Mater. Phys. 2010, vol. 82, no. 10, 104118.ADSCrossRefGoogle Scholar
  19. 19.
    Luo, F., Cai, L.-C., Chen, X.-R., Jing, F.-Q., and Alfe, D., J. Appl. Phys., 2012, vol. 111, no. 5, 053503.ADSCrossRefGoogle Scholar
  20. 20.
    Shao, T., Wen, B., Melnik, R., Yao, S., Kawazoe, Y., and Tian, Y., J. Appl. Phys., 2012, vol. 111, no. 8, 083525.ADSCrossRefGoogle Scholar
  21. 21.
    Lazicki, A., Dewaele, A., Loubeyre, P., and Mezouar, M., Phys. Rev. B: Condens. Matter Mater. Phys. 2012, vol. 86, no. 11, 1741181.CrossRefGoogle Scholar
  22. 22.
    Robert, G., Legrand, P., and Bernard, S., AIP Conf. Proc., 2012, vol. 1426, p. 1203.ADSCrossRefGoogle Scholar
  23. 23.
    Agrawal, A., Mishra, R., Ward, L., Flores, K.M., and Windl, W., Modell. Simul. Mater. Sci. Eng. 2013, vol. 21, no. 8, 085001.ADSCrossRefGoogle Scholar
  24. 24.
    Zhang, J., Zhu, J., Velisavljevic, N., Wang, L., and Zhao, Y., J. Appl. Phys., 2013, vol. 114, no. 17, 173509.ADSCrossRefGoogle Scholar
  25. 25.
    Guo, Z.-C., Luo, F., and Cheng, Y., Comput. Mater. Sci. 2014, vol. 84, p. 139.CrossRefGoogle Scholar
  26. 26.
    Corso, A.D., J. Phys.: Condens. Matter, 2016, vol. 28, no. 7, 075401.ADSGoogle Scholar
  27. 27.
    Bodryakov, V.Yu., High Temp. 2014, vol. 52, no. 6, p. 840.CrossRefGoogle Scholar
  28. 28.
    Bodryakov, V.Yu., Phys. Solid State 2014, vol. 56, no. 11, p. 2359.ADSCrossRefGoogle Scholar
  29. 29.
    Bodryakov, V.Yu., Inorg. Mater. 2015, vol. 51, no. 2, p. 172.CrossRefGoogle Scholar
  30. 30.
    Bodryakov, V.Yu., Tech. Phys. 2015, vol. 60, no. 3, p. 381.CrossRefGoogle Scholar
  31. 31.
    Bodryakov, V.Yu., Open Sci. J. Mod. Phys. 2015, vol. 2, no. 4, p. 50.Google Scholar
  32. 32.
    Bodryakov, V.Yu., High Temp. 2015, vol. 53, no. 5, p. 643.CrossRefGoogle Scholar
  33. 33.
    Bodryakov, V.Yu. and Karpova, E.V., Ogneupory Tekh. Keram. 2015, no. 10, p. 18.Google Scholar
  34. 34.
    Bodryakov, V.Yu., High Temp. 2016, vol. 54, no. 3, p. 316.CrossRefGoogle Scholar
  35. 35.
    KnowledgeDoor. Beryllium. http://www.knowledgedoor. com/2/elements_handbook/beryllium.Google Scholar
  36. 36.
    Ginnings, D.C., Douglas, T.B., and Ball, A.F., J. Am. Chem. Soc., 1951, vol. 73, no. 3, p. 1236.CrossRefGoogle Scholar
  37. 37.
    Hill, R.W. and Smith, P.L., Philos. Mag. (1798–1977), Ser. 7 1953, vol. 44, no. 353, p. 636.CrossRefGoogle Scholar
  38. 38.
    Mit’kina, A.E., Sov. J. At. Energy, 1961, vol. 7, no. 2, p. 669.CrossRefGoogle Scholar
  39. 39.
    Kantor, P.B., Krasovitskaya, R.M., and Kisel’, A.N., Fiz. Met. Metalloved. 1960, vol. 10, no. 6, p. 835.Google Scholar
  40. 40.
    Kelley, K.K., Contributions to the Data on Theoretical Metallurgy. XIII. High Temperature Heat Content, Heat Capacity and Entropy Data for the Elements and Inorganic Compounds, Washington: US Government Print. Office, 1960.Google Scholar
  41. 41.
    Corruccini, R.J. and Gniewek, J.J., Specific heats of technical solids at low temperatures: A compilation from the literature, National Bureau of Standards Monograph NBS_21, Washington: US Government Print. Office, 1960.Google Scholar
  42. 42.
    Gmelin, E., C. R. Acad. Sci., 1964, vol. 259, no. 20, p. 3459.Google Scholar
  43. 43.
    Chirkin, V.S., Sov. At. Energy, 1966, vol. 20, no. 1, p. 107.CrossRefGoogle Scholar
  44. 44.
    Ahlers, G., Phys. Rev. 1966, vol. 145, no. 2, p. 419.ADSCrossRefGoogle Scholar
  45. 45.
    Touloukian, Y.S. and Buyco, E.H., Thermophysical Properties of Matter (TPRC Data Series), vol. 4: Specific Heat—Metallic Elements and Alloys, New York, Washington: IFI/Plenum 1971.Google Scholar
  46. 46.
    Novitskii, L.A. and Kozhevnikov, I.G., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh (Thermophysical Properties of Materials at Low Temperatures), Moscow: Mashinostroenie, 1975.Google Scholar
  47. 47.
    Robie, R.A., Hemingway, B.S., and Fisher, J.R., in Geol. Surv. Bull., Washington: US Government Print. Office, 1979, no. 1452.Google Scholar
  48. 48.
    Gurvich, L.V., Veits, I.V., Medvedev, V.A., et al., Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnoe izdanie (Thermodynamic Properties of Individual Substances: A Reference Edition), 4 vols., Glushko, V.P., Ed., Moscow: Nauka 1981, vol. 3, books 1and 2.Google Scholar
  49. 49.
    Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh. Spravochnoe izdanie (Thermophysical Properties of Metals at High Temperatures: A Reference Book), Moscow: Metallurgiya, 1989.Google Scholar
  50. 50.
    Swenson, C.A., J. Appl. Phys., 1991, vol. 70, no. 6, p. 3046.ADSCrossRefGoogle Scholar
  51. 51.
    Fizicheskie velichiny. Spravochnoe izdanie (Physical Quantities: A Reference Book), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar
  52. 52.
    Alcock, C.B., Chase, M.W., and Itkin, V.P., J. Phys. Chem. Ref. Data, 1993, vol. 22, no. 1, p. 1.ADSCrossRefGoogle Scholar
  53. 53.
    Watson, R.D., Youchison, D.L., Dombrowski, D.E., Guiniatouline, R.N., and Kupriynov, I.B., Fusion Eng. Des. 1997, vol. 37, no. 4, p. 553.CrossRefGoogle Scholar
  54. 54.
    Chase, M.W., Jr., J. Phys. Chem. Ref. Data, 1998, no. 9, p. 1.Google Scholar
  55. 55.
    Scaffidi-Argentina, F., Longhurst, G.R., Shestakov, V., and Kawamurad, H., Fusion Eng. Des., 2000, vols. 51–52, p. 23.CrossRefGoogle Scholar
  56. 56.
    Dinsdale, A.T., SGTE Data for Pure Elements, Teddington, UK: NPL Materials Centre, 2007.Google Scholar
  57. 57.
    Hedayat, A., Khounsary, A., and Mashayek, F., Thermo-mechanical properties of silicon, germanium, diamond, beryllium and silicon carbide for high heat load X-ray optics applications, in Proc. SPIE 8502, Adv. X-Ray, EUV Opt. Components VII, 85020O, 2012.CrossRefGoogle Scholar
  58. 58.
    Arblaster, J.W., J. Phase Equilib. Diffus., 2016, vol. 37, no. 5, p. 581.CrossRefGoogle Scholar
  59. 59.
    Kaye, G.W.C. and Laby, T.H., General Physics. Specific Heat Capacities. http://www.kayelaby.npl.co.uk/general_ physics/2_3/2_3_6.html.Google Scholar
  60. 60.
    Property Tables and Charts. http://highered.mcgrawhill. com/sites/dl/free/0073398128/835451/App1.pdf.Google Scholar
  61. 61.
    NIST. Material Measurements Laboratory. Cryogenic Technologies Group. Material Properties: Beryllium. http://cryogenics.nist.gov/MPropsMAY/Beryllium.Google Scholar
  62. 62.
    Kosolapov, G.F. and Trapeznikov, A.K., Zh. Eksp. Tekh. Fiz. 1936, vol. 6, no. 6, p. 577.Google Scholar
  63. 63.
    Owen, E.A. and Richards, T.L., Philos. Mag. (1798–1977), Ser. 7 1936, vol. 22, no. 146, p. 304.CrossRefGoogle Scholar
  64. 64.
    Erfling, H.D., Ann. Phys. (New York) 1939, vol. 426, no. 2, p. 136.ADSGoogle Scholar
  65. 65.
    Gordon, P.A., J. Appl. Phys., 1949, vol. 20, no. 10, p. 908.ADSCrossRefGoogle Scholar
  66. 66.
    Amonenko, V.M., Ivanov, V.E., Tikhvinskii, T.F., Finkel’, V.A., and Shpagin, I.V., Fiz. Met. Metalloved. 1961, vol. 12, no. 6, p. 865.Google Scholar
  67. 67.
    Corruccini, R.J. and Gnievek, J.J., Thermal expansion of technical solids at low temperatures: A compilation from the literature, National Bureau of Standards Monograph NBS_29, Washington, DC: US Government Print. Office, 1961.Google Scholar
  68. 68.
    Watrous, J.D., Thermal expansion of SNAP materials, Tech. Rep. N. NAA-SR-6047, Atomic International. Div. of North American Aviation, Canoga Park, CA, 1961.Google Scholar
  69. 69.
    Meyerhoff, R.W. and Smith, J.F., J. Appl. Phys., 1962, vol. 33, no. 1, p. 219.ADSCrossRefGoogle Scholar
  70. 70.
    Finkel’, V.A. and Papirov, I.I., Fiz. Met. Metalloved. 1968, vol. 26, no. 6, p. 1108.Google Scholar
  71. 71.
    Novikova, S.I., Teplovoe rasshirenie tverdykh tel. Spravochnoe izdanie (Thermal Expansion of Solids: A Reference Book), Moscow: Nauka, 1974.Google Scholar
  72. 72.
    Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D., Thermophysical Properties of Matter (TPRC Data Series), vol. 12: Thermal Expansion. Metallic Elements and Alloys, New York, Washington: IFI/Plenum 1975.Google Scholar
  73. 73.
    Kaye, G.W.C. and Laby, T.H., General Physics. Thermal Expansion. http://www.kayelaby.npl.co.uk/general_ physics/2_3/2_3_5.html.Google Scholar
  74. 74.
    Owen, E.A. and Pickup, L., Philos. Mag. (1798–1977), Ser. 7 1935, vol. 20, no. 137, p. 1274.Google Scholar
  75. 75.
    Treco, R.M., Trans. Am. Inst. Mining Met. Eng., 1950, vol. 188, p. 1274.Google Scholar
  76. 76.
    Laquer, H.L., Low temperature thermal expansion of various materials, Tech. Inf. Service Rep. N. AECD-3606, Oak Ridge, TN: AEC, 1952.Google Scholar
  77. 77.
    Martin, A.J. and Moore, A., J. Less-Common Met., 1959, vol. 1.Google Scholar
  78. 78.
    Schwarzenberger, D.R., Philos. Mag. 1959, vol. 4, no. 47, p. 1242.ADSCrossRefGoogle Scholar
  79. 79.
    Mackay, K.J.H. and Hill, N.A., J. Nucl. Mater., 1963, vol. 8, no. 2, p. 263.ADSCrossRefGoogle Scholar
  80. 80.
    Rowland, W.D. and White, J.S., J. Phys. F: Met. Phys., 1972, vol. 2, no. 2, p. 231.ADSCrossRefGoogle Scholar
  81. 81.
    Frantsevich, I.N., Voronov, F.F., and Bakuta, S.A., Uprugie postoyannye i moduli uprugosti metallov i nemetallov. Spravochnor izdanie (Elastic Constants and Moduli of Elasticity of Metals and Nonmetals: A Reference Book), Kiev: Naukova Dumka 1982.Google Scholar
  82. 82.
    Reich, R., Kinh, V.Q., and Bonmarin, J., C. R. Acad. Sci., 1963, vol. 256, p. 5558.Google Scholar
  83. 83.
    Buschhorn, G., Diedrich, E., Kufner, W., Rzepka, M., Genz, H., Hoffmann-Stascheck, P., and Richter, A., Phys. Rev. B: Condens. Matter Mater. Phys. 1997, vol. 55, no. 10, p. 6196.ADSCrossRefGoogle Scholar
  84. 84.
    Migliori, A., Ledbetter, H., Thoma, D.J., and Darling, T.W., J. Appl. Phys., 2004, vol. 95, no. 5, p. 2436.ADSCrossRefGoogle Scholar
  85. 85.
    Nadal, M.-H., Bourgeois, L., Clément, F., and Ravel-Chapuis, G., CHOCS Av., 2010, vol. 20, p. 38.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ural State Pedagogical UniversityYekaterinburgRussia

Personalised recommendations