High Temperature

, Volume 56, Issue 2, pp 184–192 | Cite as

Ideal and Ultimate Tensile Strength of a Solid Body

  • V. G. Baidakov
  • A. O. Tipeev
Thermophysical Properties of Materials


The mechanical stability of an ideal elastic solid under infinitesimal and finitesimal changes in its state parameters is considered. The temperature and density dependences of the isothermic moduli of bulk compression K, simple shear, and tetragonal shear in a Lennard-Jones face-centered cubic (FCC) crystal have been determined by means of molecular dynamic experiments in the region of stable and metastable states. It has been shown that the crystalline phase remains stable under long-wave spatially nonuniform density fluctuations on the spinodal (K = 0) at pressures below the pressure of the endpoint of the melting line (p < pK < 0). Here, the critical nucleus formation work is also finitesimal. Hence, spinodal states in quasisteady- state processes at p < 0 not only are attainable, but the transition across the spinodal without destroying the homogeneity in the substance also proves to be feasible. In this case, the boundary of the ideal strength of a solid is set by the vanishing of the uniaxial compression modulus \(\tilde K\) for a certain specified deformation direction. The spinodal also is not the boundary of the ideal strength of a solid at positive and small negative pressures. A solid loses its ability for a restorative response to finitesimal spatially nonuniform density disturbances before the spinodal (\(\tilde K\) = 0) is attained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gibbs, Dzh.V., Termodinamika. Statisticheskaja mehanika (Thermodynamics. Statistical Mechanics), Moscow: Nauka 1982.Google Scholar
  2. 2.
    Skripov, V.P., Metastabil’naya zhidkost’ (Metastable Liquid), Moscow: Nauka, 1972.Google Scholar
  3. 3.
    Polanyi, M., Z. Phys., 1921, vol. 7, no. 1, p. 323.ADSCrossRefGoogle Scholar
  4. 4.
    Frenkel, J., Z. Phys., 1926, vol. 37, no. 7, p. 572.ADSCrossRefGoogle Scholar
  5. 5.
    Orowan, E., Rep. Prog. Phys. 1949, vol. 12, p. 185.ADSCrossRefGoogle Scholar
  6. 6.
    Hill, R., Math. Proc. Cambridge Philos. Soc. 1975, vol. 77, p. 225.ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Born, M., J. Chem. Phys., 1939, vol. 7, no. 8, p. 591.ADSCrossRefGoogle Scholar
  8. 8.
    Wallace, D.C., Solid State Phys. 1970, vol. 25, p. 301.CrossRefGoogle Scholar
  9. 9.
    Ramji Rao, R. and Padmaja, A., J. Appl. Phys., 1988, vol. 64, no. 6, p. 3320.ADSCrossRefGoogle Scholar
  10. 10.
    Wang, H. and Li, M., J. Phys.: Condens. Matter, 2012, vol. 24, p245402.Google Scholar
  11. 11.
    Krasil’nikov, O.M., Vekilov, Yu.Kh., and Mosyagin, I.Yu., JETP, 2012, vol. 115, no. 2, p. 237.ADSCrossRefGoogle Scholar
  12. 12.
    Landau, L.D. and Lifshits, E.M., Teoriya uprugosti (Theory of Elasticity), Moscow: Nauka, 1965.zbMATHGoogle Scholar
  13. 13.
    Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1964, part 1.Google Scholar
  14. 14.
    Ginzburg, V.L., Levanyuk, A.P., and Sobyanin, A.A., Phys. Rep. 1980, vol. 57, p. 151.ADSCrossRefGoogle Scholar
  15. 15.
    Baidakov, V.G., Galashev, A.E., and Skripov, V.P., Fiz. Tverd. Tela. 1980, vol. 2, no. 9, p. 2681.Google Scholar
  16. 16.
    Cağin, T. and Ray, R.J., Phys. Rev. B: Condens. Matter Mater. Phys. 1988, vol. 38, no. 12, p. 7940.ADSCrossRefGoogle Scholar
  17. 17.
    Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, nos. 11–12, p. 525.Google Scholar
  18. 18.
    Lifshits, I.M. and Gulida, L.S., Dokl. Akad. Nauk SSSR 1952, vol. 87, no. 3, p. 377.Google Scholar
  19. 19.
    Motorin, V.I., Fiz. Tverd. Tela. 1987, vol. 29, no. 4, p. 1277.Google Scholar
  20. 20.
    Roitburg, A.L., Fiz. Tverd. Tela. 1983, vol. 25, no. 1, p. 33.Google Scholar
  21. 21.
    Brener, E.A. and Marchenko, V.I., Pis’ma Zh. Eksp. Teor. Fiz. 1992, vol. 56, no. 7, p. 381.ADSGoogle Scholar
  22. 22.
    Baidakov, V.G. and Protsenko, S.P., JETP, 2006, vol. 103, no. 6, p. 876.ADSCrossRefGoogle Scholar
  23. 23.
    Baidakov, V.G. and Protsenko, S.P., Phys. Rev. Lett. 2005, vol. 95, p. 015701.ADSCrossRefGoogle Scholar
  24. 24.
    Baidakov, V.G. and Bobrov, K.S., J. Chem. Phys., 2014, vol. 140, p. 184506.ADSCrossRefGoogle Scholar
  25. 25.
    Baidakov, V.G., Protsenko, S.P., and Kozlova, Z.R., Fluid Phase Equilib. 2008, vol. 263, no. 1, p. 55.CrossRefGoogle Scholar
  26. 26.
    Wedekind, J., Chkonia, G., Wolk, J., Strey, R., and Requera, D., J. Chem. Phys., 2009, vol. 131, p. 114506.ADSCrossRefGoogle Scholar
  27. 27.
    Kelchner, C.L., Plimpton, S.J., and Hamilton, J.C., Phys. Rev. B: Condens. Matter Mater. Phys. 1998, vol. 58, no. 17, p. 11085.ADSCrossRefGoogle Scholar
  28. 28.
    Baidakov, V.G., Protsenko, S.P., and Tipeev, A.O., JETP Lett., 2014, vol. 98, no. 12, p. 801.ADSCrossRefGoogle Scholar
  29. 29.
    Skripov, V.P. and Koverda, V.P., Spontannaya kristallizatsiya pereokhlazhdennykh zhidkostei (Spontaneous Crystallization of Supercooled Liquids), Moscow: Nauka, 1984.Google Scholar
  30. 30.
    Baidakov, V.G. and Tipeev, A.O., J. Chem. Phys., 2012, vol. 136, 074510.ADSCrossRefGoogle Scholar
  31. 31.
    Hirth, J.P. and Pound, G.M., Condensation and Evaporation, Nucleation und Growth Kinetics, vol. 11of Progress in Material Science, Oxford: Pergamon, 1963.Google Scholar
  32. 32.
    Broughton, J.Q. and Gilmer, G.H., J. Chem. Phys., 1986, vol. 84, no. 10, p. 5741.ADSCrossRefGoogle Scholar
  33. 33.
    Kacnel’son, M.I. and Trefilov, A.V., Dinamika i termodinamika kristallicheskoj reshetki (Dynamics and Thermodynamics of the Crystal Lattice), Moscow: IzdAT, 2002.Google Scholar
  34. 34.
    Krivoglaz, M.A., Fiz. Tverd. Tela. 1963, vol. 5, no. 12, p. 3439.Google Scholar
  35. 35.
    Levanyuk, A.P., Zh. Eksp. Teor. Fiz. 1974, vol. 66, no. 6, p. 2255.Google Scholar
  36. 36.
    Kanel, G.I., Fortov, V.E., and Razorenov, S.V., Phys.—Usp. 1980, vol. 50, no. 8, p. 771.ADSCrossRefGoogle Scholar
  37. 37.
    Kanel, G.I., Savinykh, A.S., and Razorenov, S.V., High Temp. 2016, vol. 54, no. 5, p. 662.CrossRefGoogle Scholar
  38. 38.
    Ashitkov, S.I., Komarov, P.S., Agranat, M.B., Kanel, G.I., and Fortov, V.E., JETP Lett., 2013, vol. 98, no. 7, p. 384.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Thermal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations