High Temperature

, Volume 56, Issue 1, pp 153–155 | Cite as

Superheated Water Atomization: A Possibility of Obtaining Sprays of Droplets of Micron Diameters

  • V. I. Zalkind
  • Yu. A. Zeigarnik
  • V. L. Nizovskii
  • L. V. Nizovskii
  • S. S. Shchigel
Short Communications


In the given brief communication, new experimental data on superheated water atomization are presented. It is shown that in contrast to the case of short cylindrical nozzles, which provide bimodal water–droplet sprays, the application of divergent nozzles makes it possible to obtain one-modal water atomization with droplets of about micrometer diameter. This is explained by the changes in the mechanism of superheated water jet fragmentation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Favorskii, O.N., Bessmertnykh, A.V., Grigor’yants, R.R., Zhuk, A.Z., Zalkind, V.I., Zeigarnik, Yu.A., Ivanov, P.P., Miroshnichenko, V.I., Murakhin, S.A., Pikin, M.A., Shevchenko, I.S., and Kuz’mak, S.B., Therm. Eng., 2005, vol. 52, no. 6, p. 487.Google Scholar
  2. 2.
    Batenin, V.M., Alekseev, V.B., Zalkind, V.I., Zeigarnik, Yu.A., Kosoi, A.S., and Nizovskii, V.L., Tech. Phys., 2015, vol. 60, no. 4, p. 164.Google Scholar
  3. 3.
    Yan, Z., Zyao, R., and Duan, F., in Proc. School of Mechanical and Aerospace Engineering, Singapore, 2001, p. 285.Google Scholar
  4. 4.
    Pryanichnikov, A.V., Roenko, V.V., and Bondarev, E.B., Pozhary Chrezvych. Situatsii: Predotvrashch., Likvidats., 2015, no. 4, p. 7.Google Scholar
  5. 5.
    Reshetnikov, A.V., Mazheiko, N.A., Skokov, V.N., and Koverda, V.P., High Temp., 2007, vol. 45, no. 6, p. 761.CrossRefGoogle Scholar
  6. 6.
    Veira, M.M. and Simoes-Moreira, J.R., J. Fluid Mech., 2007, no. 572, p. 121.ADSCrossRefGoogle Scholar
  7. 7.
    Simoes-Moreira, J.R., Angelo, E., and Viera, M.M., J. Thermophys. Heat Transfer, 2002, vol. 16, no. 3, p. 415.CrossRefGoogle Scholar
  8. 8.
    Witlox, H., Harper, M., Bowen, P., and Cleary, V., J. Hazard. Mater., 2007, vol. 124, no. 3, p. 797.CrossRefGoogle Scholar
  9. 9.
    Lamanna, G., Park, P., Khafiz, J., Fulge, H., Fasounlas, S., Grehan, G., Saengkaew, S., Weigand, B., and Steelant, J., in Proc. 8th European Symposium on Thermodynamics for Space Vehicles, Lisbon, 2015.Google Scholar
  10. 10.
    Labuntsov, D.A. and Avdeev, A.A., Teplofiz. Vys. Temp., 1981 vol. 19, no. 3, p. 398.Google Scholar
  11. 11.
    Avdeev, A.A., High Temp., 2016, vol. 54, no. 5, p. 742.CrossRefGoogle Scholar
  12. 12.
    Avdeev, A., Bubble Systems, Springer, 2016.CrossRefGoogle Scholar
  13. 13.
    The TopHat Turbine Cycle, in Modern Power Systems. Gas Turbine Technology, 2001, p. 35.Google Scholar
  14. 14.
    Dombrovskii, L.A., Zalkind, V.A., Zeigarnik, Yu.A., Marinichev, D.V., Nizovskii, V.L., Oksman, A.A., and Khodakov, K.A., Therm. Eng., 2009, vol. 56, no. 3, p. 191.ADSCrossRefGoogle Scholar
  15. 15.
    Zalkind, V.I., Zeigarnik, Yu.A., Marinichev, D.V., Nizovskii, L.V., Nizovskii, V.L., and Oksman, A.A., in Proc. 5th Russian National Conference on Heat Transfer, Moscow, 2010, vol. 5, p. 168.Google Scholar
  16. 16.
    Chaker, M., Meher, C., and Mee, T., J. Eng. Gas Turbines Power, 2004, vol. 126, no. 3, p. 550.Google Scholar
  17. 17.
    Alekseev, V.B., Zalkind, V.I., Zeigarnik, Yu.A., Marinichev, D.V., Nizovskii, V.L., and Nizovskii, L.V., High Temp., 2015, vol. 53, no. 2, p. 214.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Zalkind
    • 1
  • Yu. A. Zeigarnik
    • 1
  • V. L. Nizovskii
    • 1
  • L. V. Nizovskii
    • 1
  • S. S. Shchigel
    • 1
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations