High Temperature

, Volume 56, Issue 1, pp 84–91 | Cite as

Effect of Gravity on Premixed Methane–Air Flames

  • A. I. Krikunova
  • E. E. Son
Heat and Mass Transfer and Physical Gasdynamics


Premixed flames under different levels of gravity were studied experimentally and numerically. The experiments were carried out in the Bremen Drop tower. The object of investigation were conical premixed rich, lean, and stoichiometric CH4–air flames with wide range of flow regimes, at Reynolds numbers of 600–2000, which were generated on specially designed cone nozzle and premixed cylinder chamber with grids and beads. Planar laser-induced fluorescence OH radicals and high-speed video recording was performed under microgravity, terrestrial conditions, and inverted gravity. All the experiments were performed at atmospheric pressure. Our experiments confirm that gravity has a complex influence on laminar and weakly turbulent premixed flames. Gravity causes flame flickering, while under reduced gravity flames are stable and almost not flicker. Based on the experimental data and numerical simulation, a correlation of flickering frequency with different mixture equivalence ratio and gravity is formed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Microgravity Combustion: Fire in Free Fall, Ross, H.D., Ed., San Diego, CA: Academic, 2001.Google Scholar
  2. 2.
    Faeth, G.M. and Law, C.K., Prog. Energy Combust. Sci., 1994, vol. 20, p. 65.CrossRefGoogle Scholar
  3. 3.
    Krivulin, V.N., Kudryavtsev, Ye.A., Baratov, A.N., Pavlova, V.L., Fedosov, L.N., Luzhetskiy, V.K., Shlenov, V.M., and Babkin, V.S., Dokl. Akad. Nauk SSSR, 1979, vol. 247, no. 5, p. 1184.Google Scholar
  4. 4.
    Most, J., Most, A., Sussett, A., Baillargeat, J., and Joulain, P., in Proc. 10th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 2001.Google Scholar
  5. 5.
    Takahashi, F. and Katta, V.R., Proc. Combust. Inst., 2005, vol. 30, no. 1, p. 383.CrossRefGoogle Scholar
  6. 6.
    Hegdenyma, U., Zhou, L., and Bahadori, M.Y., Combust. Sci. Technol., 1994, vol. 102, p. 95.CrossRefGoogle Scholar
  7. 7.
    Walsh, K.T., Fielding, J., Smooke, M.D., and Long, M.B., Proc. Combust. Inst., 2000, vol. 28, no. 2, p. 1973.CrossRefGoogle Scholar
  8. 8.
    Charest, M.R., Groth, C.P., and Gülder, Ö.L., in Proc. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 2011, p. 412.Google Scholar
  9. 9.
    Reimann, J. and Will, S., Microgravity Sci. Technol., 2005, vol. 16, no. 1, p. 333.ADSCrossRefGoogle Scholar
  10. 10.
    Reimann, J., Kuhlmann, S.A., and Will, S., Microgravity Sci. Technol., 2010, vol. 22, no. 4, p. 499.ADSCrossRefGoogle Scholar
  11. 11.
    Takahashi, F., Linteris, G.T., and Katta, V.R., Proc. Combust. Inst., 2011, vol. 33, no. 2, p. 2531.CrossRefGoogle Scholar
  12. 12.
    Maruta, K., Yoshida, M., Guo, H., Ju, Y., and Niioka, T., Combust. Flame, 1998, vol. 112, no. 1, p. 181.CrossRefGoogle Scholar
  13. 13.
    Al-Ammar, K.N., Agrawal, A.K., and Gollahalli, S.R., Proc. Combust. Inst., 2000, vol. 28, no. 2, p. 1997.CrossRefGoogle Scholar
  14. 14.
    Sunderland, P.B., Krishnan, S.S., and Gore, J.P., Combust. Flame, 2004, vol. 136, no. 1, p. 254.CrossRefGoogle Scholar
  15. 15.
    Maruta, K., Yoshida, M., Ju, Y., and Niioka, T., Symp. (Int.) Combust., [Proc.], 1996, vol. 26, no. 1, p. 1283.CrossRefGoogle Scholar
  16. 16.
    Ronney, P.D. and Wachman, H.Y., Combust. Flame, 1985, vol. 62, no. 2, p. 107.CrossRefGoogle Scholar
  17. 17.
    Ronney, P.D., Combust. Flame, 1985, vol. 62, no. 2, p. 121.CrossRefGoogle Scholar
  18. 18.
    Durox, D., Baillot, F., and Scouflaire, P., and Prud’Homme, R., Combust. Flame, 1990, vol. 82, no. 1, p. 66.CrossRefGoogle Scholar
  19. 19.
    Bedat, B., Kostiuk, L.W., and Cheng, R.K., in Proc. 3rd Int. Microgravity Combustion Workshop, NASA Lewis Research, Cleveland, OH, 1995, p. 395.Google Scholar
  20. 20.
    Kostiuk, L.W. and Cheng, R.K., Exp. Fluids, 1994, vol. 18, nos. 1–2, p. 59.CrossRefGoogle Scholar
  21. 21.
    Kostiuk, L.W. and Cheng, R.K., Combust. Flame, 1995, vol. 103, nos. 1–2, p. 27.CrossRefGoogle Scholar
  22. 22.
    Sharp, L.M., Dietrich, D.L., and Motil, B.J., J. Aerosp. Eng., 2013, vol. 26, no. 2, p. 439.CrossRefGoogle Scholar
  23. 23.
    Dunsky, C.M., Symp. (Int.) Combust., [Proc.], 1992, vol. 24, no. 1, p. 177.CrossRefGoogle Scholar
  24. 24.
    Durox, D., Symp. (Int.) Combust., [Proc.], 1992, vol. 24, no. 1, p. 197.CrossRefGoogle Scholar
  25. 25.
    ZARM Drop Tower Bremen User Manual, ZARM FABmbH University of Bremen, Bremen, 2012.Google Scholar
  26. 26.
    Son, E.E., Krikunova, A.I., and Saveliev, A.S., High Temp., 2016, vol. 54, no. 3, p. 403.CrossRefGoogle Scholar
  27. 27.
    Krikunova, A.I., Son, E.E., and Saveliev, A.S., J. Phys.: Conf. Ser., 2016, vol. 774, no. 1, 012087.Google Scholar
  28. 28.
    Wagner, V., Paa, W., Triebel, W., Eigenbrod, C., Klinkov, K., Larionov, M., Giesen, A., and Stolzenburg, C., Rev. Sci. Instrum., 2014, vol. 85, no. 3, 0331061.CrossRefGoogle Scholar
  29. 29.
    Krikunova, A.I., Son, E.E., Klinkov, K.V., and Eigenbrod, C., Prikl. Fiz., 2017, vol. 3, p. 21.Google Scholar
  30. 30.
    Prud’homme, R., Ann. Chim., 1992, vol. 17, no. 1, p. 13.Google Scholar
  31. 31.
    Shepherd, I.G., Cheng, R.K., and Day, M.S., The dynamics of flame flicker in conical premixed flames: An experimental and numerical study, in Colloquium 4: Laminar Flames, Lawrence Berkeley Natl. Lab., 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations