High Temperature

, Volume 56, Issue 2, pp 217–222 | Cite as

Convective Heat Transfer at an Annular Jet Impingement on a Flat Blockage

  • V. I. Terekhov
  • S. V. Kalinina
  • K. A. Sharov
Heat and Mass Transfer and Physical Gasdynamics


The experimental results on heat transfer of an annular impinging jet have been. The Reynolds numbers Re = (1.2–3.6) × 104, the distance S from the nozzle to a blockage, S/d0 = 2, 4, 6, and the circular slit height d2/d0 = 0.51 and 0.71, where d0 and d2 are the internal and external nozzle diameters, have been varied. It is shown that at the same air mass flow rate, replacement of a round nozzle with an annular one results in heat-transfer intensification (up to 70% at the stagnation point). The maximum heat transfer gain occurs at a small nozzle–wall distance (S/d0 = 2). The heat-transfer increase is accompanied by an increase in the thermal pulsation intensity. The degree of intensification of the heat exchange depends on the height of the circular slit and the nozzle–wall distance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garimella, S.V. and Nenaydykh, B., Int. J. Heat Mass Transfer 1996, vol. 39, p. 2915.CrossRefGoogle Scholar
  2. 2.
    Colucci, D.W. and Viskanta, R., Exp. Thermal Fluid Sci. 1996, vol. 13, p. 71.CrossRefGoogle Scholar
  3. 3.
    Lee, J. and Lee, S.-J., Int. J. Heat Mass Transfer 2000, vol. 43, p. 3497.CrossRefGoogle Scholar
  4. 4.
    Mazur, A.I. and Yushina, L.E., Prom. Teplotekh. 1980, vol. 2, no. 2, p. 35.Google Scholar
  5. 5.
    Travnicek, Z. and Tesar, V., Exp. Thermal Fluid Sci. 2013, vol. 44, p. 565.CrossRefGoogle Scholar
  6. 6.
    Travnicek, Z., Peszynski, K., Hosek, J., and Wawrzyniak, S., Int. J. Heat Mass Transfer 2003, vol. 46, p. 1265.CrossRefGoogle Scholar
  7. 7.
    Maki, H. and Yabe, A., Exp. Heat Transfer 1989, vol. 2, p. 1.ADSCrossRefGoogle Scholar
  8. 8.
    Chattopadhyay, H., Int. J. Heat Mass Transfer, 2004, vol. 47, nos. 14–16, p. 3197.CrossRefGoogle Scholar
  9. 9.
    Song, J. and Jo, M.C., J. Heat Transfer, 2004, vol. 126, p. 554.CrossRefGoogle Scholar
  10. 10.
    Ichimiya, K., Int. J. Heat Mass Transfer, 2003, vol. 39, p. 545.ADSCrossRefGoogle Scholar
  11. 11.
    Zhen, H.S., Leung, C.W., and Cheung, C.S., Appl. Therm. Eng. 2012, vol. 36, p. 386.CrossRefGoogle Scholar
  12. 12.
    Huang, X.Q., Leung, C.W., Chan, C.K., and Probert, S.D., Appl. Energy 2006, vol. 83, p. 401.CrossRefGoogle Scholar
  13. 13.
    Yang, H.Q., Kim, T., Lu, T.J., and Ichimiya, K., Int. J. Heat Mass Transfer 2010, vol. 53, p. 4092.CrossRefGoogle Scholar
  14. 14.
    Hallqvist, T. and Fuchs, L., AIAA Pap. 2005-5153, 2005.Google Scholar
  15. 15.
    Yang, H.Q., Kim, T.B., and Lu, T.J., Sci. China: Technol. Sci. 2011, vol. 54, no. 3, p. 749.CrossRefGoogle Scholar
  16. 16.
    Celik, N. and Eren, H., Exp. Thermal Fluid Sci. 2009, vol. 33, p. 715.CrossRefGoogle Scholar
  17. 17.
    Durao, J.H. and Whitelaw, J.H., J. Fluids Eng., 1973, vol. 95, p. 467.CrossRefGoogle Scholar
  18. 18.
    Terekhov, V.I. and Mshvidobadze, Yu.M., Therm. Sci. 2016, vol. 20, Suppl. no. 1, p. S35. doi 10.2298/TSCI150819137TGoogle Scholar
  19. 19.
    Dyban, E.P. and Mazur, A.I., Konvektivnyi teploobmen pri struinom obtekanii tel (Convective Heat Transfer in Jet Flow around Bodies), Kiev: Naukova dumka, 1982.Google Scholar
  20. 20.
    Gupta, A.L., Lilley, D.G., and Syred, N., Swirl Flows, Wells: Abacus, 1984.Google Scholar
  21. 21.
    Maki, H., Aida, E., and Akimoto, K., JSME Int. J., Ser. B 1980, vol. 46, p. 1959.Google Scholar
  22. 22.
    Kalinina, S.V., Terekhov, V.I., and Sharov, K.A., Fluid Dyn. 2015, vol. 50, no. 5, p. 665.CrossRefGoogle Scholar
  23. 23.
    Sapozhnikov, S.Z., Mityakov, V.Yu., and Mityakov, A.V., Osnovy gradientnoi teplometrii (Fundamentals of Gradient Thermometry), St. Petersburg: St. Peterburgsk. Politekh. Univ. 2012.Google Scholar
  24. 24.
    Lemanov, V.V. and Terekhov, V.I., High Temp. 2016, vol. 54, no. 3, p. 454.CrossRefGoogle Scholar
  25. 25.
    Pakhomov, M.A. and Terekhov, V.I., High Temp. 2016, vol. 54, no. 1, p. 150.CrossRefGoogle Scholar
  26. 26.
    Brdlik, P.M. and Savin, V.K., J. Eng. Phys., 1966, vol. 10, no. 4, p. 241.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Terekhov
    • 1
  • S. V. Kalinina
    • 1
  • K. A. Sharov
    • 1
  1. 1.Kutateladze Institute of Thermal Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations