Advertisement

High Temperature

, Volume 56, Issue 1, pp 33–37 | Cite as

The Caloric Properties of Liquid Bismuth

  • S. V. Stankus
  • I. V. Savchenko
  • O. S. Yatsuk
Thermophysical Properties of Materials

Abstract

We investigated the enthalpy of liquid bismuth within the temperature range of 580–1325 K in a massive isothermal drop calorimeter using the mixture method. We obtained the approximation equations and determined the isobaric heat capacity. The estimated errors of the data on the enthalpy and the heat capacity are equal to 0.2% and 0.5%, respectively. The results are compared with the literature data. We confirmed the existence of a heat-capacity minimum of liquid bismuth of approximately 800 K. We show that above 940 K the heat capacity depends linearly on the temperature. We developed tables of the recommended values of the caloric properties within the range from the melting point to 1325 K.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbin, N.M., Tikina, I.V., Terent’ev, D.I., Alekseev, S.G., and Porkhachev, M.Yu., High Temp., 2017, vol. 55, no. 4, p. 506.CrossRefGoogle Scholar
  2. 2.
    Askhadullin, R.Sh., Martynov, P.N., Rachkov, V.I., Legkikh, A.Yu., Storozhenko, A.N., Ul’yanov, V.V., and Gulevskii, V.A., High Temp., 2016, vol. 54, no. 4, p. 564.CrossRefGoogle Scholar
  3. 3.
    Touloukian, Y.S. and Buyco, E.H., Specific Heat: Metallic Elements and Alloys, vol. 4 of Thermophysical Properties of Matter, New York: Plenum, 1970.CrossRefGoogle Scholar
  4. 4.
    Hultgren, R., Desai, R.D., Hawkins, D.T., Gleiser, M., Kelley, K.K., and Wagman, D.D., Selected Values of Thermodynamic Properties of Elements, Metals Park, OH: Amer. Soc. Metals, 1973.Google Scholar
  5. 5.
    Bell, H. and Hultgren, R., Heat Capacity of Liquid Bismuth, Technical Report, University of California, 1960, no. 155, p. 17.Google Scholar
  6. 6.
    Gronvold, F., Acta Chem. Scand., 1975, vol. A, no. 10, p. 945.CrossRefGoogle Scholar
  7. 7.
    Shpil’rain, E.E., Yakimovich, K.A, Totskii, E.E., Timrot, D.L., and Fomin, V.A., Teplofizicheskie svoistva shchelochnykh metallov (Thermophysical Properties of Alkali Metals), Moscow: Standart, 1970.Google Scholar
  8. 8.
    Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., Instrum. Exp. Tech., 2017, vol. 60, no. 4, p. 608.CrossRefGoogle Scholar
  9. 9.
    Ditmars, D.A. and Douglas, T.B., J. Res. Natl. Bur. Stand., Sect. A, 1971, vol. 75, no. 5, p. 401.CrossRefGoogle Scholar
  10. 10.
    Khairulin, R.A., Lyapunov, K.M., Mozgovoi, A.G., Stankus, S.V., and Ulyusov, P.V., J. Alloys Compd., 2005, vol. 387, p. 183.CrossRefGoogle Scholar
  11. 11.
    Lyusternik, V.E., Prib. Tekh. Eksp., 1959, no. 4, p. 127.Google Scholar
  12. 12.
    Carpenter, L.G. and Harle, T.F., Proc. R. Soc. London, Ser. A., 1932, vol. 136, no. 829, p. 243.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Stankus
    • 1
  • I. V. Savchenko
    • 1
  • O. S. Yatsuk
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations