Advertisement

High Temperature

, Volume 56, Issue 1, pp 124–137 | Cite as

Thermal Hydraulic Studies of Liquid-Metal Coolants in Nuclear-Power Facilities

  • V. I. Rachkov
  • A. P. Sorokin
  • A. V. Zhukov
Reviews

Abstract

We present the results of experimental, numerical, and theoretical thermal hydraulic studies at the SSC IPPE aimed at substantiation of designs of nuclear-power facilities with liquid-metal coolants. The fundamental studies cover the physical basics of hydrodynamics and heat transfer in the channels of nuclearpower facilities, the development of the theory and numerical methods, as well as codes and code verification based on the experiments. The results of applied studies of fuel-element bundles are obtained while considering the influences of various geometric and mode factors (fuel-element energy release, the coolant-flow rate through fuel assemblies, specific features of the assembly geometry, assembly casings, separate fuel elements, fuel pellets, displacers, etc.), including parameter variation during the lifetime of a facility due to temperature inhomogeneities, radiation swelling, radiation creep, etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Efanov, A.D., Kozlov, F.A., Rachkov, V.I., Sorokin, A.P., and Chernonog, V.L., in Nauch.-tekhn. sb. Issledovaniya v oblasti teplofiziki yadernykh energeticheskikh ustanovok (k 60-letiyu teplofizicheskogo otdela FEI) (Research in the Field of Thermal Physics of Nuclear Power Plants: Collection of Papers Devoted to the 60th Anniversary of the Thermophysical Department of the Fiz.-Energ. Inst.), Obninsk: Fiz.-Energ. Inst., 2014, p. 6.Google Scholar
  2. 2.
    Rachkov, V.I., Tyurin, A.V., Usanov, V.I., and Voshchinin, A.P., Effektivnost’ yadernoi energotekhnologii (Efficiency of Nuclear Energy Technology), Moscow: Tsentr. Nauchn.-Issled. Inst. Upravl., Ekon. Inf. Minist. RF At. Energ., 2008.Google Scholar
  3. 3.
    Rachkov, V.I., Izv. Vyssh. Uchebn. Zaved., Yad. Energ., 2013, no. 3, p. 5.Google Scholar
  4. 4.
    Rachkov, V.I., Poplavskii, V.M., Tsibulya, A.M., et al., At. Energy, 2010, vol. 108, no. 4, p. 254.CrossRefGoogle Scholar
  5. 5.
    Adamov, E.O., Dzhalavyan, A.V., Lopatkin, A.V., et al., At. Energy, 2012, vol. 112, no. 6, p. 391.CrossRefGoogle Scholar
  6. 6.
    Rightmire, B. and Tayler, H.J., Iron Steel Inst., 1953, vol. 175, p. 167.Google Scholar
  7. 7.
    Styrikovich, M.A., Sorin, A.R., and Semenov, I.E., Zh. Tekh. Phys., 1940, vol. 10, no. 10, p. 1324.Google Scholar
  8. 8.
    Isakoff, S.E. and Drew, T.B., in Proc. General Discuss on Heat Transfer. Inst. Mech. Eng. and ASME, 1951, p. 405.Google Scholar
  9. 9.
    Borishanskii, V.M. and Kutateladze, S.S., Zh. Tekh. Phys., 1958, vol. 28, no. 4, p. 836.Google Scholar
  10. 10.
    Subbotin, V.I., Ibragimov, M.Kh., Ushakov, P.A., Bobkov, V.P., Zhukov, A.V., and Yur’ev, Yu.S., Gidrodinamika i teploobmen v atomnykh energeticheskikh ustanovkakh (osnovy rascheta) (Hydrodynamics and Heat Transfer in Nuclear Power Plants: Basis of Calculations), Moscow: Atomizdat, 1975.Google Scholar
  11. 11.
    Ushakov, P.A., in Sb. dokl. Koordinatsionnogo nauchnotekhn. soveta 1–2 (Collection of Papers of the Coordination Sci.-Tech. Council 1–2), Moscow: Sovet Ekon. Vzaimopom., 1978, p. 296.Google Scholar
  12. 12.
    Brighton, J.A. and Jones, J.B., J. Basic Eng., 1964, vol. 86, no. 4, p. 835.CrossRefGoogle Scholar
  13. 13.
    Ibragimov, M.Kh., Isupov, I.A., Kobzar’, L.L., and Subbotin, V.I., Sov. At. Energy, 1966, vol. 21, no. 2, p. 731.CrossRefGoogle Scholar
  14. 14.
    Zhukov, A.V., Sorokin, A.P., Titov, P.A., and Ushakov, P.A., Sov. At. Energy, 1986, vol. 60, no. 5, p. 369.CrossRefGoogle Scholar
  15. 15.
    Zhukov, A.V., Sorokin, A.P., Kirillov, P.L., Ushakov, P.A., Kiryushin, A.I., and Kuzavkov, N.G., RTM (Technical Guide) 1604.008-88: Methodical Instructions and Recommendations for Thermal-Hydraulic Calculation of Active Zones of Fast Reactors, Obninsk: Fiz.-Energ. Inst., 1988.Google Scholar
  16. 16.
    Rachkov, V.I., Efanov, A.D., Zhukov, A.V., Kalyakin, S.G., and Sorokin, A.P., Izv. Vyssh. Uchebn. Zaved., Yad. Energ., 2014, no. 1, p. 39.Google Scholar
  17. 17.
    Petukhov, B.S., Teploobmen i soprotivlenie pri laminarnom techenii zhidkosti v trubakh (Heat Transfer and Resistance in a Laminar Flow of Liquid in Pipes), Moscow: Energiya, 1967.Google Scholar
  18. 18.
    Labuntsov, D.A., Teploenergetika, 1958, no. 3, p. 87.Google Scholar
  19. 19.
    Petukhov, B.S., Genin, L.G., Kovalev, S.A., and Solov’ev, S.L., Teploobmen v yadernykh energeticheskikh ustanovkakh (Heat Transfer in Nuclear Power Plants), Moscow: Mosk. Energ. Inst., 2003.Google Scholar
  20. 20.
    Dwyer, O.E., Nucl. Sci. Eng., 1964, vol. 19, no. 1, p. 48.CrossRefGoogle Scholar
  21. 21.
    Ibragimov, M.Kh., Subbotin, V.I., Bobkov, V.P., Sabelev, G.I., and Taranov, G.S., Struktura turbulentnogo potoka i mekhanizm teploobmena v kanalakh (Structure of the Turbulent flow and Mechanism of Heat Transfer in Channels), Moscow: Atomizdat, 1978.Google Scholar
  22. 22.
    Kirillov, P.L., Sov. At. Energy, 1963, vol. 13, no. 5, p. 1103.CrossRefGoogle Scholar
  23. 23.
    Borishanskii, V.M., Kutateladze, S.S., Novikov, I.I., and Fedynskii, O.S., Zhidkometallicheskie teplonositeli (Liquid Metal Coolants), Moscow: Atomizdat, 1976, 3rd ed.Google Scholar
  24. 24.
    Subbotin, V.I., Ibragimov, M.Kh., Ivanovskii, M.N., Arnol’dov, M.N., and Nomofilov, E.V., Sov. At. Energy, 1962, vol. 11, no. 2, p. 1169.Google Scholar
  25. 25.
    Kirillov, P.L. and Sorokin, A.P., in Zhidkie metally: ot pervogo teplofizicheskogo stenda k krupnomasshtabnoi atomnoi energetike (Liquid Metals: From the First Thermophysical Stand to Large-Scale Nuclear Power Engineering), Efanov, A.D. and Kozlov, F.A., Eds., Obninsk: Fiz.-Energ. Inst., 2001, p. 56.Google Scholar
  26. 26.
    Petukhov, B.S. and Yushin, A.Ya., Dokl. Akad. Nauk SSSR, 1960, vol. 136, no. 6, p. 1321.Google Scholar
  27. 27.
    Subbotin, V.I., Ushakov, P.A., Gabrianovich, B.N., Talanov, V.D., and Sviridenko, I.P., Inzh.-Fiz. Zh., 1963, vol. 5, no. 4, p. 16.Google Scholar
  28. 28.
    Talanov, V.D. and Ushakov, P.A., in Zhidkie metally (Liquid Metals), Moscow: Atomizdat, 1967, p. 9.Google Scholar
  29. 29.
    Subbotin, V.I., Ivanovskii, M.N., and Orlov, Yu.I., Teplofiz. Vys. Temp., 1967, vol. 5, no. 6, p. 1025.Google Scholar
  30. 30.
    Orlov, Yu.I., in Nauch.-tekhn. sb. Issledovaniya v oblasti teplofiziki yadernykh energeticheskikh ustanovok (k 60-letiyu teplofizicheskogo otdela FEI) (Research in the Field of Thermal Physics of Nuclear Power Plants: Collection of Papers Devoted to the 60th Anniversary of the Thermophysical Department of the Fiz.-Energ. Inst.), Obninsk: Fiz.-Energ. Inst., 2014, p. 125.Google Scholar
  31. 31.
    Beznosov, A.V., Pinaev, S.S., Davydov, D.V., Molodtsov, A.A., Bokova, T.A., Martynov, P.N., and Rachkov, V.I., At. Energy, 2005, vol. 98, no. 3, p. 170.CrossRefGoogle Scholar
  32. 32.
    Kirillov, P.L., Taking into account the contact thermal resistance to heat transfer of liquid metal in a circular pipe, Preprint of the Phys. Energy Inst., Obninsk, 1971, no. 284.Google Scholar
  33. 33.
    Kirillov, P.L., Heat transfer of liquid metals in round pipes (Single-phase and two-phase flows), Extended Abstract of Doctoral (Tech.) Dissertation, Moscow: Inst. High Temperature, USSR Acad. Sci., 1969.Google Scholar
  34. 34.
    Dwyer, O.E., Recent Development in Liquid–Metal Heat Transfer, New York: Brokhaven National Laboratory Upton, 1969.Google Scholar
  35. 35.
    Ushakov, P.A., Zhukov, A.V., and Matyukhin, N.M., Teplofiz. Vys. Temp., 1976, vol. 14, no. 3, p. 538.ADSGoogle Scholar
  36. 36.
    Kokorev, L.S., Korsun, A.S., and Petrovichev, V.I., Vopr. Teplofiz. Yad. Reakt., 1970, no. 2, p. 58.Google Scholar
  37. 37.
    Ibragimov, M.Kh. and Zhukov, A.V., Sov. At. Energy, 1966, vol. 20, no. 5, p. 483.CrossRefGoogle Scholar
  38. 38.
    Ibragimov, M.Kh. and Zhukov, A.V., Sov. At. Energy, 1968, vol. 24, no. 6, p. 642.CrossRefGoogle Scholar
  39. 39.
    Ushakov, P.A., Zhukov, A.V., and Matyukhin, N.M., Teplofiz. Vys. Temp., 1977, vol. 15, no. 1, p. 76.Google Scholar
  40. 40.
    Ushakov, P.A., Zhukov, A.V., and Matyukhin, N.M., Teplofiz. Vys. Temp., 1971, vol. 15, no. 5, p. 1027.Google Scholar
  41. 41.
    Dwyer, O.E., Nucl. Sci. Eng., 1966, vol. 25, p. 343.CrossRefGoogle Scholar
  42. 42.
    Zhukov, A.V., Kirillov, P.L., Matyukhin, N.M., et al., Teplogidravlicheskii raschet TVS bystrykh reaktorov s zhidkometallicheskim okhlazhdeniem (Thermohydraulic Calculation of FAof Fast Reactors with Liquid Metal Cooling), Moscow: Energoatomizdat, 1985.Google Scholar
  43. 43.
    Ushakov, P.L. and Sorokin, A.P., Teplofiz. Vys. Temp., 1978, vol. 16, no. 4, p. 787.Google Scholar
  44. 44.
    Zhukov, A.V., Sorokin, A.P., and Ushakov, P.A., Sov. At. Energy, 1981, vol. 51, no. 5, p. 708.CrossRefGoogle Scholar
  45. 45.
    Zhukov, A.V., Sorokin, A.P., and Matyukhin, N.M., Mezhkanal’nyi obmen v TVS bystrykh reaktorov: raschetnye programmy i prakticheskoe prilozhenie (Interchannel Exchange in FAof Fast Reactors: Calculation Programs and Practical Application), Moscow: Energoatomizdat, 1991.Google Scholar
  46. 46.
    Zhukov, A.V., Sorokin, A.P., and Matyukhin, N.M., Mezhkanal’nyi obmen v TVS bystrykh reaktorov: teoreticheskie osnovy i fizika protsessa (Interchannel Exchange in FAof Fast Reactors: Theoretical Bases and Physics of the Process), Moscow: Energoatomizdat, 1989.Google Scholar
  47. 47.
    Sorokin, G.A., Zhukov, A.V., Avdeev, E.F., and Sorokin, A.P., The system of closing relations within the framework of the model of per-channel thermalhydraulic analysis of the core of nuclear reactors, Preprint of the Phys. Energy Inst., Obninsk, 2000, no. 2829.Google Scholar
  48. 48.
    Zhukov, A.V., Sorokin, A.P., Titov, P.A., and Ushakov, P.A., Turbulent interchannel momentum exchange in FAof reactors, Preprint of the Phys. Energy Inst., Obninsk, 1989, no. 2015.Google Scholar
  49. 49.
    Rudzinski, K.F., Singh, K.St., and Pierre, C.C., Can. J. Chem. Eng., 1972, vol. 50, no. 2, p. 297.CrossRefGoogle Scholar
  50. 50.
    Rowe, D.S., Johnson, B.M., and Knudsen, I.G., Int. J. Heat Mass Transfer, 1974, vol. 17, no. 3, p. 407.CrossRefGoogle Scholar
  51. 51.
    Zhukov, A.V., Kotovskii, N.A., and Kudryavtseva, L.K., Interchannel thermal interaction in beams of smooth rods, Preprint of the Phys. Energy Inst., Obninsk, 1977, no. 757.Google Scholar
  52. 52.
    Bogoslovskaya, G.P., Sorokin, A.P., Kirillov, P.L., Zhukov, A.V., Ushakov, P.A., and Titov, P.A., High Temp., 1996, vol. 34, no. 6, p. 889.Google Scholar
  53. 53.
    Nijsing, R. and Eifler, F., in Proc. Int. Heat Transfer Seminar, Trogir, Yugoslavia, 1971, EU/C-1C791.Google Scholar
  54. 54.
    Ingesson, L. and Hedberg, S., in Proc. of the 4th Int. Conf., Paris, 1970, vol. 3, p. 7.Google Scholar
  55. 55.
    Rogers, J.T. and Tarasuk, W.R., Trans. Am. Nucl. Soc., 1968, vol. 11, p. 346.Google Scholar
  56. 56.
    Zhukov, A.V., Sviridenko, E.Ya., Matyukhin, N.M., et al., Investigation of hydrodynamics of complex flow in assemblies of rods with spacing wire guiding (Electromagnetic method of measurements), Preprint of the Phys. Energy Inst., Obninsk, 1979, no. 867.Google Scholar
  57. 57.
    Zhukov, A.V., Sviridenko, E.Ya., Matyukhin, N.M., et al., Investigation of local hydrodynamic characteristics and coefficients of interchannel mixing in assemblies of rods with spacing by screw finning (“Edge along the edge” tangency of rods), Preprint of the Phys. Energy Inst., Obninsk, 1979, no. 908.Google Scholar
  58. 58.
    Hoffman, H. and Baumgartner, E., in Proc. Symp. on Fuel Elements, Brussels, 1973, IAEA-SM-173/IV-20.Google Scholar
  59. 59.
    Rowe, D.S. and Chapman, C.C., Measurement of turbulent velocity, intensity and scale in rod bundle flow channels containing a grid spacer, BNWL-1737, Washington, 1973.Google Scholar
  60. 60.
    Sorokin, A.P. and Bogoslovskaya, G.P., Teploenergetika, 1997, no. 3, p. 21.Google Scholar
  61. 61.
    Kazachkovskii, O.D., Sorokin, A.P., Zhukov, A.V., et al., The method of lumped parameters in the problem of the temperature field in shaped FAin fast reactors with nonadiabatic boundary conditions, Preprint of the Phys. Energy Inst., Obninsk, 1985, no. 1972.Google Scholar
  62. 62.
    Kazachkovskii, O.D., Sorokin, A.P., Zhukov, A.V., Ushakov, P.A., Kriventsev, V.A., and Titov, P.A., Stochastic unevenness of the temperature fields in the fast reactors, Preprint of the Phys. Energy Inst., Obninsk, 1985, no. 1678.Google Scholar
  63. 63.
    Sorokin, A.P., Efanov, A.D., and Yuriev, Yu.S., Zhukov, A.V., Ushakov, P.A., and Bogoslovkaya, G.P., in LMFR Core Thermohydraulics Status and Prospects, IAEA-TECDOC-1057, Vienna: Int. At. Energy Agency, 2000, p. 9.Google Scholar
  64. 64.
    Sorokin, G.A., Ninokata, H., Endo, H., et al., Izv. Vyssh. Uchebn. Zaved., Yad. Energ., 2005, no. 4, p. 92.Google Scholar
  65. 65.
    Ninokata, H., in Proc. Int. Seminar on Subchannel Analysis (ISSCA-92), Tokyo, 1992, p. 15.Google Scholar
  66. 66.
    Zhukov, A.V., Kuzina, Yu.A., and Sorokin, A.P., At. Energy, 2005, vol. 99, no. 5, p. 770.CrossRefGoogle Scholar
  67. 67.
    Schultz, R. and Hitter, D., in Proc. THIRS-Workshop, Forschungszentrum Karlsruhe, Karlsruhe, 2008, p. 14.Google Scholar
  68. 68.
    Bogatirjev, I.L., Zhukov, A.V., Matjukhin, N.M., Sorokin, A.P., and Ushakov, P.A., in LMFR Core Thermohydraulics Status and Prospects, IAEA-TECDOC-1057, Vienna: Int. At. Energy Agency, 2000, p. 227.Google Scholar
  69. 69.
    Kazachkovskii, O.D., Zhukov, A.V., Sorokin, A.P., and Matyukhin, N.M., Sov. At. Energy, 1988, vol. 65, no. 2, p. 627.CrossRefGoogle Scholar
  70. 70.
    Zhukov, A.V., Sorokin, A.P., Efanov, A.D., and Kuzina, Yu.A., Izv. Vyssh. Uchebn. Zaved., Yad. Energ., 2007, no. 1, p. 56.Google Scholar
  71. 71.
    Zhukov, A.V., Kuzina, Yu.A., Sorokin, A.P., Leonov, V.N., Smirnov, V.P., and Sila-Novitskii, A.G. Teploenergetika, 2002, no. 3, p. 2.Google Scholar
  72. 72.
    Zhukov, A.V., Kuzina, Yu.A., Privezentsev, V.V., Sorokin, A.P., and Glushakov, D.A., in Sb. dokladov Nauch.-tehn. konf. “Teplofizika reaktorov na bystrykh neitronakh (Teplofizika-2014)” (Proc. Sci.-Tech. Conf. on Thermophysics of Fast Neutron Reactors (Thermophysics-2014)), Obninsk: Fiz.-Energ. Inst., 2014.Google Scholar
  73. 73.
    Kazachkovskii, O.D., Zhukov, A.V., Matyukhin, N.M., et al., Intensification of heat and mass transfer in assemblies of fuel rods of fast reactors with anti-directional wire guiding at a non-uniform cross-section of the assembly of separation, Preprint of the Phys. Energy Inst., Obninsk, 1983, no. 1396.Google Scholar
  74. 74.
    Kuzina, Yu.A., Sorokin, A.P., and Zhukov, A.V., in Sb. tr. 3 Konf. “Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh” (Proc. 3rd Conf. on Heavy Liquid Metal Coolants in Nuclear Technology), 2 vols., Obninsk: Fiz.-Energ. Inst., 2010, vol. 2, p. 420.Google Scholar
  75. 75.
    Genin, L.G. and Sviridov, V.G., Gidrodinamika i teploobmen MGD-techenii v kanalakh (Hydrodynamics and Heat Transfer of MHD Flows in Channels), Moscow: Mosk. Energ. Inst., 2001.Google Scholar
  76. 76.
    Belyaev, I.A., Genin, L.G., and Sviridov, V.G., et al., Magnetohydrodynamics, 2013, vol. 49, nos. 1–2, p. 177.Google Scholar
  77. 77.
    Genin, L.G. and Sviridov, V.G., Abstracts of Papers, Nauch.-tehn. konf. “Teplofizika reaktorov na bystrykh neitronakh (Teplofizika-2014)” (Sci.-Tech. Conf. on Thermophysics of Fast Neutron Reactors (Thermophysics-2014)), Obninsk: Fiz.-Energ. Inst, 2014, p. 28.Google Scholar
  78. 78.
    Belyaev, I.A., Ivochkin, Yu.P., Listratov, Ya.I., Razuvanov, N.G., and Sviridov, V.G., High Temp., 2015, vol. 53, no. 5 p. 734.CrossRefGoogle Scholar
  79. 79.
    Mitrofanova, O.V., High Temp., 2015, vol. 53, no. 6, p. 847.CrossRefGoogle Scholar
  80. 80.
    Mitrofanova, O.V., Podzorov, G.D., and Tokarev, Yu.N., High Temp., 2015, vol. 53, no. 3, p. 413.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.State Scientific Center of the Russian FederationLeypunsky Institute for Physics and Power EngineeringObninskRussia

Personalised recommendations