High Temperature

, Volume 56, Issue 1, pp 98–108 | Cite as

Measurement of Non-Stationary Gas Flow Parameters Using Diode Laser Absorption Spectroscopy at High Temperatures and Pressures

  • V. V. Liger
  • Yu. A. Kuritsyn
  • V. R. Mironenko
  • M. A. Bolshov
  • Ya. Ya. Ponurovskii
  • O. M. Kolesnikov
New Energetics


The layout of an absorption spectrometer with diode lasers for contactless measurement of the temperature and water-vapor concentration in gas flows with mixture pressures of up to 3 atm and temperatures of 300–2000 K has been designed. The technique is based on the rapid tuning of the radiation wavelength of two lasers, the registration of the absorption lines of water molecules that are located in the tuning range, and the fitting of the experimental absorption spectra by theoretical ones that have been simulated using spectroscopic databases. The original components of the spectrometer and different algorithms of the processing of experimental spectra are described. The performance of the spectrometer and processing methods were tested in the laboratory with a cuvette at a pressure of 1 atm and temperatures of 300–1500 K. The different processing algorithms give a reasonable coincidence of data on hot zone parameters that were obtained by the method of diode laser absorption spectrometry, and the temperature that was measured using standard sensors. The designed layout of the spectrometer passed the first tests on the T-131 experimental stand at the TsAGI (Central Aerohydrodynamics Institute).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, M.G., Meas. Sci. Technol., 1998, vol. 9, p. 545.ADSCrossRefGoogle Scholar
  2. 2.
    Hanson, R.K., Proc. Combust. Inst., 2011, vol. 33, p. 1.CrossRefGoogle Scholar
  3. 3.
    Bolshov, M.A., Kuritsyn, Y.A., and Romanovskii, Y.V., Spectrochim. Acta, Part B, 2015, vol. 106, p. 45.ADSCrossRefGoogle Scholar
  4. 4.
    Schulz, C., Dreizler, A., Ebert, V., and Wolfrum, J., Combustion diagnostics, in: Springer Handbook of Experimental Fluid Mechanics, Berlin–Heidelberg: Springer, 2007, p. 1241.CrossRefGoogle Scholar
  5. 5.
    Wang, Z.P., Li, F., Gu, H.B., Yu, X.L., and Zhang, X.Y., Aerosp. Sci. Technol., 2015, vol. 42, p. 169.CrossRefGoogle Scholar
  6. 6.
    Sappey, A., Sutherland, L., Owenby, D., van Houdt, P., Hannam, J., Zhao, Q., McCormick, P., Masterson, P., Estes, M., Williams, S., and Barhorst, T., Flight-ready TDLAS combustion sensor for hypersonics, AIAA Pap. 2009-7234, 2009.CrossRefGoogle Scholar
  7. 7.
    Ma, L., Li, X., Sanders, S.T., Caswell, A.W., Roy, S., Plemmons, D.H., et al., Opt. Express, 2013, vol. 21, p. 1152.ADSCrossRefGoogle Scholar
  8. 8.
    Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., Mironenko, V.R., Leonov, S.B., and Yarantsev, D.A., Quantum Electron., 2009, vol. 39, no. 9, p. 869.ADSCrossRefGoogle Scholar
  9. 9.
    Bol’shov, M.A., Kuritsyn, Yu.A., Leonov, S.B., Liger, V.V., Mironenko, V.R., Savelkin, K.V., and Yarantsev, D.A., Teplofiz. Vys. Temp., 2010, vol. 48, Suppl. issue, p. 9.Google Scholar
  10. 10.
    Bolshov, M.A., Kuritsyn, Y.A., Liger, V.V., Mironenko, V.R., Leonov, S.B., and Yarantsev, D.A., Appl. Phys. B, 2010, vol. 100, p. 397.ADSCrossRefGoogle Scholar
  11. 11.
    Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Benner, D.C., Bernath, P.F., et al., J. Quant. Spectrosc. Radiat. Transfer, 2013, vol. 130, p. 4.ADSCrossRefGoogle Scholar
  12. 12.
    Rothman, L.S., Gordon, I.E., Barber, R.J., Dothe, H., Gamache, R.R., Goldman, A., et al., J. Quant. Spectrosc. Radiat. Transfer, 2010, vol. 111, p. 2139.ADSCrossRefGoogle Scholar
  13. 13.
    Jacquinet-Husson, N., Crepeau, L., Armante, R., Boutammine, C., Chédin, A., Scott, N.A., et al., J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, p. 2395.ADSCrossRefGoogle Scholar
  14. 14.
    Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., and Mironenko, V.R., Opt. Spectrosc., 2011, vol. 110, no. 6, p. 848.ADSCrossRefGoogle Scholar
  15. 15.
    NI USB-6259. ru/nid/209150Google Scholar
  16. 16.
    Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., Mironenko, V.R., Nadezhdinskii, A.I., Ponurovskii, Ya.Ya., Leonov, S.B., and Yarantsev, D.A., Quantum Electron., 2015, vol. 45, no. 4, p. 377.ADSCrossRefGoogle Scholar
  17. 17.
    NTT Electronics Corporation (NEL). com/en/products/photonics/gas_sensing.htmlGoogle Scholar
  18. 18.
    Voloshchenko, O.V., Zosimov, S.A., Ivan’kin, M.A., Kolesnikov, O.M., Nikolaev, A.A., Tereshin, A.M., and Chevagin, A.F., Tr. Tsentr. Aerogidrodin. Inst., 2015, no. 2736.Google Scholar
  19. 19.
    Sacher Lasertechnik. laser-diodes/distributed_feedback_laser/dfb/single_ mode.htmlGoogle Scholar
  20. 20.
    Leonov, S.B., Firsov, A.A., Yarantsev, D.A., Bolshov, M.A., Kuritsyn, Yu.A., Liger, V.V., and Mironenko, V.R., Temperature measurement in plasma-assisted combustor by TDLAS, AIAA Pap. 2012-3181, 2012.CrossRefGoogle Scholar
  21. 21.
    Filippov, A.I., Akhmetova, O.V., and Rodionov, A.S., High Temp., 2013, vol. 51, no. 2, p. 246.CrossRefGoogle Scholar
  22. 22.
    Zakirov, I.M., Zalyalieva, F.F., Tukhvatullin, R.S., and Ashrapov, T.A., High Temp., 2013, vol. 51, no. 6, p. 742.CrossRefGoogle Scholar
  23. 23.
    Askarova, A.S., Messerle, V.E., Ustimenko, A.B., Bolegenova, S.A., Maksimov, V.Yu., and Gabitova, Z.Kh., High Temp., 2015, vol. 53, no. 3, p. 445.CrossRefGoogle Scholar
  24. 24.
    Teichert, H., Fernholz, T., and Ebert, V., Appl. Opt., 2003, vol. 42, p. 2043.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Liger
    • 1
  • Yu. A. Kuritsyn
    • 1
  • V. R. Mironenko
    • 1
  • M. A. Bolshov
    • 1
  • Ya. Ya. Ponurovskii
    • 2
  • O. M. Kolesnikov
    • 3
  1. 1.Institute for SpectroscopyRussian Academy of SciencesMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Central Aerohydrodynamic Institute (TsAGI)ZhukovskyRussia

Personalised recommendations