Advertisement

High Temperature

, Volume 56, Issue 1, pp 70–76 | Cite as

Molecular Dynamics Simulation of Pervaporation of an Ethanol–Water Mixture on a Hybrid Silicon Oxide Membrane

  • A. V. Klinov
  • I. P. Anashkin
  • R. R. Akberov
Heat and Mass Transfer and Physical Gasdynamics
  • 24 Downloads

Abstract

A molecular-statistical method for simulating the process of pervaporation on hybrid silicon oxide membranes is proposed. This method is a development of the control volume method. Models of three membrane samples with different densities and pore sizes were obtained. These samples were used for the molecular-dynamics simulation of pervaporation of a 95 mol % aqueous solution of ethanol at a temperature of 343 K. It is shown that the membrane is selective with respect to water; the component flow is found to exponentially depend on the pore size.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dhaval, S.S., Pervaporation of solvent mixtures using polymeric and zeolitic membranes: Separation studies and Modelling, Doctoral Dissertation, Kentucky: Univ. Kentucky, 2001.Google Scholar
  2. 2.
    Buonomenna, M.G. and Golemme, G., Advanced Materials for Membrane Preparation, Bentham, 2012.CrossRefGoogle Scholar
  3. 3.
    Wijmans, J.G. and Baker, R.W., J. Membr. Sci., 1995, vol. 107, nos. 1–2, p. 1.CrossRefGoogle Scholar
  4. 4.
    Travis, K.P. and Gubbins, K.E., Mol. Simul., 2001, vol. 27, nos. 5–6, p. 405.CrossRefGoogle Scholar
  5. 5.
    Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon, 1989.MATHGoogle Scholar
  6. 6.
    Lithoxoos, G.P., Labropoulos, A., Peristeras, L.D., Kanellopoulos, N., Samios, J., and Economou, I.G., J. Supercrit. Fluids, 2010, vol. 55, no. 2, p. 510.CrossRefGoogle Scholar
  7. 7.
    Shevkunov, S.V., High Temp., 2015, vol. 52, no. 2, p. 259.CrossRefGoogle Scholar
  8. 8.
    Charati, S.G. and Stern, S.A., Macromolecules, 1998, vol. 31, no. 16, p. 5529.ADSCrossRefGoogle Scholar
  9. 9.
    Yoshioka, T., Tsuru, T., and Asaeda, M., Mol. Phys., 2004, vol. 102, no. 2, p. 191.ADSCrossRefGoogle Scholar
  10. 10.
    Jia, W. and Murad, S., Mol. Phys., 2006, vol. 104, no. 19, p. 3033.ADSCrossRefGoogle Scholar
  11. 11.
    Jia, W. and Murad, S., J. Chem. Phys., 2004, vol. 120, no. 10, p. 4877.ADSCrossRefGoogle Scholar
  12. 12.
    Van der Spoel, D., Lindahl, E., Hess, B., van Buuren, A.R., Apol, E., Meulenhoff, P.J., and Berendsen, H.J.C., GROMACS User Manual, version 4.5.4, 2010.Google Scholar
  13. 13.
    Yang, J.Z., Liu, Q.L., and Wang, H.T., J. Membr. Sci., 2007, vol. 291, nos. 1–2, p. 1.CrossRefGoogle Scholar
  14. 14.
    Flanigen, E.M., Bennett, J.M., Grose, R.W., Cohen, J.P., Patton, R.L., Kirchner, R.M., and Smith, J.V., Nature, 1978, vol. 271, no. 5645, p. 512.ADSCrossRefGoogle Scholar
  15. 15.
    Kuh, J., Castillo-Sanchez, J.M., Gascon, J., Calero, S., Dubbeldam, D., Vlugt, T.J.H., and Gross, J., J. Phys. Chem. C, 2009, vol. 113, no. 32, 14290.CrossRefGoogle Scholar
  16. 16.
    Tomita, T., Nakayama, K., and Sakai, H., Micropor. Mesopor. Mater., 2004, vol. 68, nos. 1–3, p. 71.CrossRefGoogle Scholar
  17. 17.
    Malyshev, V.L., Marin, D.F., Moiseeva, E.F., Gumerov, N.A., and Akhatov, I.Sh., High Temp., 2015, vol. 53, no. 3, p. 406.CrossRefGoogle Scholar
  18. 18.
    Heffelfinger, G.S. and van Swol, F., J. Chem. Phys., 1994, vol. 100, no. 10, p. 7548.ADSCrossRefGoogle Scholar
  19. 19.
    Wu, Z., Liu, Z., Wang, W., Fan, Y., and Xu, N., Chin. J. Chem. Eng., 2008, vol. 16, no. 5, p. 709.CrossRefGoogle Scholar
  20. 20.
    MacElroy, J.M.D., Korean, J. Chem. Eng. Sci., 2000, vol. 17, no. 2, p. 129.Google Scholar
  21. 21.
    Akberov, R.R., Fazlyev, A.R., Klinov, A.V., Malygin, A.V., Farakhov, M.I., and Maryakhina, V.A., J. Nat. Gas Sci. Eng., 2015, vol. 26, p. 670.CrossRefGoogle Scholar
  22. 22.
    Akberov, R.R., Fazlyev, A.R., Klinov, A.V., Malygin, A.V., Farakhov, M.I., Maryakhina, V.A., and Kirichenko, S.M., Theor. Found. Chem. Eng., 2014, vol. 48, no. 5, p. 650.CrossRefGoogle Scholar
  23. 23.
    Castricum, H.L., Sah, A., Kreiter, R., Blank, D.H.A., Vente, J.F., and Elshof, J.E., J. Mater. Chem., 2008, vol. 18, no. 18, p. 2150.CrossRefGoogle Scholar
  24. 24.
    Van Veen, H.M., Rietkerk, M.D.A., Shanahan, D.P., van Tuel, M.M.A., Kreiter, R., Castricum, H.L., and Vente, J.F., J. Membr. Sci., 2011, vol. 380, nos. 1–2, p. 124.Google Scholar
  25. 25.
    Kreiter, R., Rietkerk, M.D.A., Castricum, H.L., Veen, H.M., Elshof, J.E., and Vente, J.F., J. Sol–Gel Sci. Technol., 2010, vol. 57, no. 3, p. 245.CrossRefGoogle Scholar
  26. 26.
    Castricum, H.L., Paradis, G.G., Mittelmeijer-Hazeleger, M.C., Kreiter, R., Vente, J.F., and Elshof, J.E., Adv. Funct. Mater., 2011, vol. 21, no. 12, p. 2319.CrossRefGoogle Scholar
  27. 27.
    HybSi®, 2016. http://www.hybsi.comGoogle Scholar
  28. 28.
    Farakhov, M.I., Klinov, A.V., Velterop, F.M., Maryakhina, V.A., Akberov, R.R., Maryakhin, N.N., and Fazlyev, A.R., Vestn. Kazansk. Tekhnol. Univ., 2012, vol. 11, p. 166.Google Scholar
  29. 29.
    Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., and Lindahl, E., Bioinformatics, 2013, vol. 29, no. 7, p. 845.CrossRefGoogle Scholar
  30. 30.
    Berendsen, H.J.C., van der Spoel, D., and van Drunen, R., Comput. Phys. Commun., 1995, vol. 91, nos. 1–3, p. 43.ADSCrossRefGoogle Scholar
  31. 31.
    GitHub-KSTU/GROMACS membrane calculation, 2014. https://github.com/KSTU/gromemGoogle Scholar
  32. 32.
    Chang, K.S., Yoshioka, T., Kanezashi, M., Tsuru, T., and Tung, K.L., J. Membr. Sci., 2011, vol. 381, nos. 1–2, p. 90.CrossRefGoogle Scholar
  33. 33.
    Feuston, B.P. and Garofalini, S.H., J. Chem. Phys., 1988, vol. 89, no. 9, p. 5818.ADSCrossRefGoogle Scholar
  34. 34.
    Schnabel, T., Vrabec, J., and Hasse, H., Fluid Phase Equilib., 2005, vol. 233, no. 2, p. 134.CrossRefGoogle Scholar
  35. 35.
    Guevara-Carrion, G., Vrabec, J., and Hasse, H., J. Chem. Phys., 2011, vol. 134, no. 7, 074508.ADSCrossRefGoogle Scholar
  36. 36.
    Abascal, J.L.F. and Vega, C., J. Chem. Phys., 2005, vol. 123, no. 23, 234505.ADSCrossRefGoogle Scholar
  37. 37.
    Chaplin, M., Water Structure and Science, 2016. http://www1.lsbu.ac.uk/water/water_models.html.Google Scholar
  38. 38.
    Anashkin, I.P., Khristolyubov, N.R., and Klinov, A.V., Vestn. Kazansk. Tekhnol. Univ., 2014, vol. 17, no. 3, p. 14.Google Scholar
  39. 39.
    Guevara-Carrion, G., Nieto-Draghi, C., Vrabec, J., and Hasse, H., J. Phys. Chem. B, 2008, vol. 112, no. 51, 16664.CrossRefGoogle Scholar
  40. 40.
    Cruz-Chu, E.R., Aksimentiev, A., and Schulten, K., J. Phys. Chem. B, 2006, vol. 110, no. 43, 21497.CrossRefGoogle Scholar
  41. 41.
    Martin, M.G. and Siepmann, J.I., J. Phys. Chem. B, 1998, vol. 102, no. 14, p. 2569.CrossRefGoogle Scholar
  42. 42.
    Okumus, E., Gürkan, T., and Yilmaz, L., J. Membr. Sci., 2003, vol. 223, nos. 1–2, p. 23.CrossRefGoogle Scholar
  43. 43.
    Chapman, P.D., Oliveira, T., Livingston, A.G., and Li, K., J. Membr. Sci., 2008, vol. 318, nos. 1–2, p. 5.CrossRefGoogle Scholar
  44. 44.
    Van Gemert, R.W. and Petrus Cuperus, F., J. Membr. Sci., 1995, vol. 105, no. 3, p. 287.CrossRefGoogle Scholar
  45. 45.
    Jia, M.D., Pleinemann, K.V., and Behling, R.D., J. Membr. Sci., 1992, vol. 73, nos. 2–3, p. 119.CrossRefGoogle Scholar
  46. 46.
    Shen, Y. and Lua, A.C., J. Appl. Polym. Sci., 2010, vol. 116, no. 5, p. 2906.Google Scholar
  47. 47.
    Koops, G.H., Nolten, J.A.M., Mulder, M.H.V., and Smolders, C.A., J. Appl. Polym. Sci., 1994, vol. 53, no. 12, p. 1639.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Klinov
    • 1
  • I. P. Anashkin
    • 1
  • R. R. Akberov
    • 1
  1. 1.Kazan National Research Technological UniversityKazanRussia

Personalised recommendations