High Temperature

, Volume 56, Issue 1, pp 146–148 | Cite as

The Dynamics of an Aerosol in an Open Tube under Oscillations of Various Intensities near Resonance

  • D. A. Gubaidullin
  • R. G. Zaripova
  • L. A. Tkachenko
  • L. R. Shaidullin
Short Communications


The dynamics of an aerosol in an open tube under the action of acoustic waves of various intensities near the first eigenfrequency in the transient mode, when shock waves are not formed, was experimentally studied. The time–pressure profiles of the aerosol were obtained, whose shape becomes somewhat different from the harmonic one only at resonance. The time of aerosol clearing for different frequencies and the piston-displacement amplitudes is determined. It is demonstrated that the dependence of the aerosol clearing time on frequency with a minimum at the first eigenfrequency is nonmonotonic in character. In the transition mode, the aerosol clearing occurs 1.5 times faster than in the shock-free wave mode with the same piston-displacement amplitudes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ilgamov, M.A., Zaripov, R.G., Galiullin, R.G., and Repin, V.B., Appl. Mech. Rev., 1996, vol. 49, no. 3, p. 137.ADSCrossRefGoogle Scholar
  2. 2.
    Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987, vol. 1.Google Scholar
  3. 3.
    Ganiev, R.F. and Ukrainskii, L.E., Nelineinaya volnovaya mekhanika i tekhnologiya (Nonlinear Wave Mechanics and Technology), Moscow: Regulyarnaya i khaoticheskaya dinamika, 2008.Google Scholar
  4. 4.
    Mednikov, E.P., Akusticheskaya koagulyatsiya i osazhdenie aerozolei (Acoustic Coagulation and Aerosol Deposition), Moscow: Akad. Nauk SSSR, 1963.Google Scholar
  5. 5.
    Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 3, p. 377.CrossRefGoogle Scholar
  6. 6.
    Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.CrossRefGoogle Scholar
  7. 7.
    Varaksin, A.Yu., High Temp., 2015, vol. 53, no. 3, p. 423.CrossRefGoogle Scholar
  8. 8.
    Gulyaev, A.M. and Kuznetsov, V.M., Akust. Zh., 1962, vol. 8, no. 4, p. 473.Google Scholar
  9. 9.
    Temkin, S., Phys. Fluids, 1970, vol. 13, p. 1639.ADSCrossRefGoogle Scholar
  10. 10.
    Shuster, K., Fichman, M., Goldshtein, A., and Gutfinger, C., Phys. Fluids, 2002, vol. 14, no. 5, p. 1802.ADSCrossRefGoogle Scholar
  11. 11.
    Gubaidullin, D.A., Zaripov, R.G., Galiullin, R.G., Galiullina, E.R., and Tkachenko, L.A., High Temp., 2004, vol. 42, no. 5, p. 794.CrossRefGoogle Scholar
  12. 12.
    Gubaidullin, D.A., Zaripov, R.G., and Tkachenko, L.A., High Temp., 2012, vol. 50, no. 4, p. 564.CrossRefGoogle Scholar
  13. 13.
    Gubaidullin, D.A., Zaripov, R.G., and Tkachenko, L.A., High Temp., 2013, vol. 51, no. 6, p. 873.CrossRefGoogle Scholar
  14. 14.
    Gubaidullin, D.A., Zaripov, R.G., and Tkachenko, L.A., High Temp., 2014, vol. 52, no. 6, p. 895.CrossRefGoogle Scholar
  15. 15.
    Gubaidullin, D.A., Zaripov, R.G., Tkachenko, L.A., and Shaidullin, L.R., High Temp., 2017, vol. 55, no. 3, p. 469.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. A. Gubaidullin
    • 1
    • 2
  • R. G. Zaripova
    • 1
  • L. A. Tkachenko
    • 1
    • 2
  • L. R. Shaidullin
    • 1
    • 2
  1. 1.Institute of Mechanics and Engineering, Kazan Scientific CenterRussian Academy of SciencesKazanRussia
  2. 2.Kazan, Volga RegionFederal UniversityKazanRussia

Personalised recommendations