Skip to main content
Log in

Modern Approaches for Calculating Flow Parameters during a Laminar–Turbulent Transition in a Boundary Layer

  • Reviews
  • Published:
High Temperature Aims and scope

Abstract

We analyze modern methods for calculating heat and hydrodynamic flow parameters in a boundary layer during the laminar–turbulent transition. The main approaches for describing the phenomenon of laminar–turbulent transition are examined. Each approach is analyzed. The manner in which different factors influence the laminar–turbulent transition is studied. An engineering model of the laminar–turbulent transition in a high-velocity flow is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tarasevich, S.E., Zlobin, A.V., and Yakovlev, A.B., High Temp., 2015, vol. 53, no. 6, p. 908.

    Article  Google Scholar 

  2. Kachanov, Y.S., Annu. Rev. Fluid Mech., 1994, vol. 26, p. 411.

    Article  ADS  Google Scholar 

  3. Morkovin, M.V., Critical evaluation of transition from laminar to turbulent shear layer with emphasis of hypersonically travelling bodies, FFDLTech. Rep. 68-1-49, 1968.

    Google Scholar 

  4. Mack, L.M., AIAA J., 1975, vol. 13, no. 3, p. 278.

    Article  ADS  Google Scholar 

  5. White, E.B., Saric, W.S., Gladden, R.D., and Gabet, P.M., Stages of swept transition, AIAA Pap. 2001-0271, 2001.

    Google Scholar 

  6. Jie Ren, Song Fu, and Jianxin Liu, in Proc. 44th AIAA Fluid Dynamics Conf., 2014.

    Google Scholar 

  7. Morkovin, M.V., On the many faces of transition, in Viscous Drag Reduction, Wells, C.S., Ed., London: Plenum, 1969, p. 1.

    Book  Google Scholar 

  8. Herbert, T., Annu. Rev. Fluid Mech., 1997, no. 29, p. 245.

    Article  ADS  Google Scholar 

  9. Schmid, P.J., et al., Theor. Comput. Fluid Dyn., 1993, vol. 4, no. 5, p. 227.

    Article  Google Scholar 

  10. Belov, I.A. and Isaev, S.A., Modelirovanie turbulentnykh techenii (Simulation of Turbulent Flows), St. Petersburg: Balt. Gos. Tekh. Univ., 2001.

    Google Scholar 

  11. Dhawan, S. and Narasimha, R., J. Fluid Mech., 1958, no. 3, p. 418.

    Article  ADS  Google Scholar 

  12. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., and Völker, S., in Proc. ASME TURBO EXPO 2004, Vienna, 2004, ASME-GT2004-53452.

    Google Scholar 

  13. Menter, F.R., Esch, T., and Kubacki, S., in Proc. 5th Int. Symposium on Turbulence Modeling and Measurements, Spain, 2002.

    Google Scholar 

  14. Langtry, R.B. and Menter, F., Transition modeling for general CFD applications in aeronautics, AIAA Pap. 2005-522, 2005.

    Book  Google Scholar 

  15. Menter, F.R., Langtry, R., and Völker, S., Flow, Turbul. Combust., 2006, vol. 77, nos. 1–4, p. 277.

    Article  Google Scholar 

  16. Langtry, R.B. and Menter, F.R., AIAA J., 2009, vol. 47, no. 12, p. 2894.

    Article  ADS  Google Scholar 

  17. Walters, D.K. and Cokljat, D., J. Fluids Eng., 2008, vol. 130, no. 12, p. 121401.

    Article  Google Scholar 

  18. Özgen, S. and Kircali, S.A., Theor. Comput. Fluid Dyn., 2008, vol. 22, p. 1.

    Article  Google Scholar 

  19. Fedorov, A.V., Annu. Rev. Fluid Mech., 2011, vol. 43, p. 79.

    Article  ADS  Google Scholar 

  20. Demetriades, A., Hypersonic viscous flow over a slender cone. Part III: Laminar instability and transition, AIAA Pap. 74-535, 1974.

    Google Scholar 

  21. Malik, M.R., AIAA J., 1989, vol. 27, no. 11, p. 1487.

    Article  ADS  Google Scholar 

  22. Surzhikov, S.T., High Temp., 2016, vol. 54, no. 2, p. 235.

    Article  Google Scholar 

  23. Bykov, L.V., Molchanov, A.M., Shcherbakov, M.A., and Yanyshev, D.S., Vychislitel’naya mekhanika sploshnykh sred v zadachakh aviatsionnoi i kosmicheskoi tekhniki (Computational Mechanics of Continuous Media in the Problems of Aviation and Space Technology), Moscow: Lenand, 2015.

    Google Scholar 

  24. Hudson, M.L. and Chokani, N., AIAA J., 1997, vol. 35, no. 6, p. 958.

    Article  ADS  Google Scholar 

  25. Molchanov, A.M., Matematicheskoe modelirovanie zadach gazodinamiki i teplomassoobmena (Mathematical Simulation of Gas Dynamics and Heat and Mass Transfer Problems), Moscow: Mosk. Aviats. Inst., 2013.

    Google Scholar 

  26. Egorov, I.V., Pal’chekovskaya, N.V., and Shvedchenko, V.V., High Temp., 2015, vol. 53, no. 5, p. 677.

    Article  Google Scholar 

  27. Zheleznyakova, A.L. and Surzhikov, S.T., High Temp., 2014, vol. 52, no. 2, p. 271.

    Article  Google Scholar 

  28. Yanbao Ma and Xiaolin Zhong, J. Fluid Mech., 2003, vol. 488, p. 31.

    Article  MathSciNet  Google Scholar 

  29. Maslov, A.A., Shiplyuk, A.N., Sidorenko, A.A., and Arnal, D., J. Fluid Mech., 2001, vol. 426, p. 73.

    Article  ADS  Google Scholar 

  30. Balakumar, P., Transition in a supersonic boundary layer due to acoustic disturbances, AIAA Pap. 2005-0096, 2005.

    Book  Google Scholar 

  31. Ghaffari, S., Marxen, O., Iaccarino, G., and Shaqfeh, E.S.G., Numerical simulations of hypersonic boundary-layer instability with wall blowing, AIAA Pap. 2010-706, 2010.

    Book  Google Scholar 

  32. Yanbao Ma and Xiaolin Zhong, J. Fluid Mech., 2003, vol. 488, p. 79.

    Article  MathSciNet  Google Scholar 

  33. Abu-Ghannam, B.J. and Shaw, R., J. Mech. Eng. Sci., 1980, vol. 22, no. 5, p. 213.

    Article  Google Scholar 

  34. Gaponov, S.A. and Terekhova, N.M., Vest. Novosib. Gos. Univ., 2013, vol. 13, no. 4, p. 64.

    Google Scholar 

  35. Stetson, K.F., Hypersonic boundary layer transition experiments, Tech. rep. AFWAL-TR-80-3062, 1980.

    MATH  Google Scholar 

  36. Reshotko, E., Annu. Rev. Fluid Mech., 1976, no. 8, p. 311.

    Article  ADS  Google Scholar 

  37. Schneider, S.P., Hypersonic boundary-layer transition with ablation and blowing, AIAA Pap. 2008-3730, 2008.

    Book  Google Scholar 

  38. Johnson, H.B., Gronvall, J.E., and Candler, G.V., Reacting hypersonic boundary layer stability with blowing and suction, AIAA Pap. 2009-938, 2009.

    Book  Google Scholar 

  39. Ghaffari, S., Marxen, O., Iaccarino, G., and Shaqfeh, E.S.G., in Proc. 48th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.

    Google Scholar 

  40. Leyva, I.A., Laurence, S., Beierholm, A.K.-W., Hornung, H.G., Wagnild, R., and Candler, G., Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions, AIAA Pap. 2009-1287, 2009.

    Book  Google Scholar 

  41. Wagnild, R., High enthalpy effects on two boundary layer disturbances in supersonic and hypersonic flow, PhD Thesis, Minneapolis: University of Minnesota, 2012.

    Google Scholar 

  42. Rasheed, A., Hornung, H.G., Fedorov, A.V., and Malmuth, N.D., AIAA J., 2002, vol. 40, no. 3, p. 481.

    Article  ADS  Google Scholar 

  43. Fedorov, A., Shiplyuk, A., Maslov, A., Burov, E., and Malmuth, N., J. Fluid Mech., 2003, vol. 479, p. 99.

    Article  ADS  Google Scholar 

  44. Gaponov, S.A. and Terekhova, N.M., J. Appl. Mech. Tech. Phys., 2009, vol. 50, no. 5, p. 733.

    Article  ADS  Google Scholar 

  45. Papp, J.L., Kenzakowski, D.C., and Dash, S.M., Extensions of a rapid engineering approach to modeling hypersonic laminar to turbulent transitional flows, AIAA Pap. 2005-892, 2005.

    Book  Google Scholar 

  46. Papp, J.L. and Dash, S.M., A rapid engineering approach to modeling hypersonic laminar to turbulent transitional flows for 2D and 3D geometries, AIAA Pap. 2008-2600, 2008.

    Book  Google Scholar 

  47. Papp, J.L. and Dash, S.M., Modeling hypersonic laminar to turbulent transitional flows for 3D geometries using a two-equation onset and intermittency transport models, AIAA Pap. 2012-0449, 2012.

    Book  Google Scholar 

  48. Wang, L. and Song Fu, Sci. China, Ser. G: Phys., Mech. Astron., 2009, vol. 52, no. 5, p. 768.

    Article  ADS  Google Scholar 

  49. Wang, L. and Song Fu, Flow, Turbul. Combust., 2011, vol. 87, p. 165.

    Article  Google Scholar 

  50. Gorskii, V.V. and Pugach, M.A., High Temp., 2015, vol. 53, no. 2, p. 223.

    Article  Google Scholar 

  51. Mee, D.J., Boundary layer transition measurements in hypervelocity flows in a shock tunnel, AIAA Pap. 2001-0208, 2001.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Bykov.

Additional information

Original Russian Text © L.V. Bykov, A.M. Molchanov, D.S. Yanyshev, I.M. Platonov, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 1, pp. 104–120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, L.V., Molchanov, A.M., Yanyshev, D.S. et al. Modern Approaches for Calculating Flow Parameters during a Laminar–Turbulent Transition in a Boundary Layer. High Temp 56, 109–123 (2018). https://doi.org/10.1134/S0018151X18010042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18010042

Navigation