Advertisement

High Temperature

, Volume 56, Issue 1, pp 109–123 | Cite as

Modern Approaches for Calculating Flow Parameters during a Laminar–Turbulent Transition in a Boundary Layer

  • L. V. Bykov
  • A. M. Molchanov
  • D. S. Yanyshev
  • I. M. Platonov
Reviews
  • 21 Downloads

Abstract

We analyze modern methods for calculating heat and hydrodynamic flow parameters in a boundary layer during the laminar–turbulent transition. The main approaches for describing the phenomenon of laminar–turbulent transition are examined. Each approach is analyzed. The manner in which different factors influence the laminar–turbulent transition is studied. An engineering model of the laminar–turbulent transition in a high-velocity flow is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tarasevich, S.E., Zlobin, A.V., and Yakovlev, A.B., High Temp., 2015, vol. 53, no. 6, p. 908.CrossRefGoogle Scholar
  2. 2.
    Kachanov, Y.S., Annu. Rev. Fluid Mech., 1994, vol. 26, p. 411.ADSCrossRefGoogle Scholar
  3. 3.
    Morkovin, M.V., Critical evaluation of transition from laminar to turbulent shear layer with emphasis of hypersonically travelling bodies, FFDLTech. Rep. 68-1-49, 1968.Google Scholar
  4. 4.
    Mack, L.M., AIAA J., 1975, vol. 13, no. 3, p. 278.ADSCrossRefGoogle Scholar
  5. 5.
    White, E.B., Saric, W.S., Gladden, R.D., and Gabet, P.M., Stages of swept transition, AIAA Pap. 2001-0271, 2001.Google Scholar
  6. 6.
    Jie Ren, Song Fu, and Jianxin Liu, in Proc. 44th AIAA Fluid Dynamics Conf., 2014.Google Scholar
  7. 7.
    Morkovin, M.V., On the many faces of transition, in Viscous Drag Reduction, Wells, C.S., Ed., London: Plenum, 1969, p. 1.CrossRefGoogle Scholar
  8. 8.
    Herbert, T., Annu. Rev. Fluid Mech., 1997, no. 29, p. 245.ADSCrossRefGoogle Scholar
  9. 9.
    Schmid, P.J., et al., Theor. Comput. Fluid Dyn., 1993, vol. 4, no. 5, p. 227.CrossRefGoogle Scholar
  10. 10.
    Belov, I.A. and Isaev, S.A., Modelirovanie turbulentnykh techenii (Simulation of Turbulent Flows), St. Petersburg: Balt. Gos. Tekh. Univ., 2001.Google Scholar
  11. 11.
    Dhawan, S. and Narasimha, R., J. Fluid Mech., 1958, no. 3, p. 418.ADSCrossRefGoogle Scholar
  12. 12.
    Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., and Völker, S., in Proc. ASME TURBO EXPO 2004, Vienna, 2004, ASME-GT2004-53452.Google Scholar
  13. 13.
    Menter, F.R., Esch, T., and Kubacki, S., in Proc. 5th Int. Symposium on Turbulence Modeling and Measurements, Spain, 2002.Google Scholar
  14. 14.
    Langtry, R.B. and Menter, F., Transition modeling for general CFD applications in aeronautics, AIAA Pap. 2005-522, 2005.CrossRefGoogle Scholar
  15. 15.
    Menter, F.R., Langtry, R., and Völker, S., Flow, Turbul. Combust., 2006, vol. 77, nos. 1–4, p. 277.CrossRefGoogle Scholar
  16. 16.
    Langtry, R.B. and Menter, F.R., AIAA J., 2009, vol. 47, no. 12, p. 2894.ADSCrossRefGoogle Scholar
  17. 17.
    Walters, D.K. and Cokljat, D., J. Fluids Eng., 2008, vol. 130, no. 12, p. 121401.CrossRefGoogle Scholar
  18. 18.
    Özgen, S. and Kircali, S.A., Theor. Comput. Fluid Dyn., 2008, vol. 22, p. 1.CrossRefGoogle Scholar
  19. 19.
    Fedorov, A.V., Annu. Rev. Fluid Mech., 2011, vol. 43, p. 79.ADSCrossRefGoogle Scholar
  20. 20.
    Demetriades, A., Hypersonic viscous flow over a slender cone. Part III: Laminar instability and transition, AIAA Pap. 74-535, 1974.Google Scholar
  21. 21.
    Malik, M.R., AIAA J., 1989, vol. 27, no. 11, p. 1487.ADSCrossRefGoogle Scholar
  22. 22.
    Surzhikov, S.T., High Temp., 2016, vol. 54, no. 2, p. 235.CrossRefGoogle Scholar
  23. 23.
    Bykov, L.V., Molchanov, A.M., Shcherbakov, M.A., and Yanyshev, D.S., Vychislitel’naya mekhanika sploshnykh sred v zadachakh aviatsionnoi i kosmicheskoi tekhniki (Computational Mechanics of Continuous Media in the Problems of Aviation and Space Technology), Moscow: Lenand, 2015.Google Scholar
  24. 24.
    Hudson, M.L. and Chokani, N., AIAA J., 1997, vol. 35, no. 6, p. 958.ADSCrossRefGoogle Scholar
  25. 25.
    Molchanov, A.M., Matematicheskoe modelirovanie zadach gazodinamiki i teplomassoobmena (Mathematical Simulation of Gas Dynamics and Heat and Mass Transfer Problems), Moscow: Mosk. Aviats. Inst., 2013.Google Scholar
  26. 26.
    Egorov, I.V., Pal’chekovskaya, N.V., and Shvedchenko, V.V., High Temp., 2015, vol. 53, no. 5, p. 677.CrossRefGoogle Scholar
  27. 27.
    Zheleznyakova, A.L. and Surzhikov, S.T., High Temp., 2014, vol. 52, no. 2, p. 271.CrossRefGoogle Scholar
  28. 28.
    Yanbao Ma and Xiaolin Zhong, J. Fluid Mech., 2003, vol. 488, p. 31.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Maslov, A.A., Shiplyuk, A.N., Sidorenko, A.A., and Arnal, D., J. Fluid Mech., 2001, vol. 426, p. 73.ADSCrossRefGoogle Scholar
  30. 30.
    Balakumar, P., Transition in a supersonic boundary layer due to acoustic disturbances, AIAA Pap. 2005-0096, 2005.CrossRefGoogle Scholar
  31. 31.
    Ghaffari, S., Marxen, O., Iaccarino, G., and Shaqfeh, E.S.G., Numerical simulations of hypersonic boundary-layer instability with wall blowing, AIAA Pap. 2010-706, 2010.CrossRefGoogle Scholar
  32. 32.
    Yanbao Ma and Xiaolin Zhong, J. Fluid Mech., 2003, vol. 488, p. 79.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Abu-Ghannam, B.J. and Shaw, R., J. Mech. Eng. Sci., 1980, vol. 22, no. 5, p. 213.CrossRefGoogle Scholar
  34. 34.
    Gaponov, S.A. and Terekhova, N.M., Vest. Novosib. Gos. Univ., 2013, vol. 13, no. 4, p. 64.Google Scholar
  35. 35.
    Stetson, K.F., Hypersonic boundary layer transition experiments, Tech. rep. AFWAL-TR-80-3062, 1980.MATHGoogle Scholar
  36. 36.
    Reshotko, E., Annu. Rev. Fluid Mech., 1976, no. 8, p. 311.ADSCrossRefGoogle Scholar
  37. 37.
    Schneider, S.P., Hypersonic boundary-layer transition with ablation and blowing, AIAA Pap. 2008-3730, 2008.CrossRefGoogle Scholar
  38. 38.
    Johnson, H.B., Gronvall, J.E., and Candler, G.V., Reacting hypersonic boundary layer stability with blowing and suction, AIAA Pap. 2009-938, 2009.CrossRefGoogle Scholar
  39. 39.
    Ghaffari, S., Marxen, O., Iaccarino, G., and Shaqfeh, E.S.G., in Proc. 48th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.Google Scholar
  40. 40.
    Leyva, I.A., Laurence, S., Beierholm, A.K.-W., Hornung, H.G., Wagnild, R., and Candler, G., Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions, AIAA Pap. 2009-1287, 2009.CrossRefGoogle Scholar
  41. 41.
    Wagnild, R., High enthalpy effects on two boundary layer disturbances in supersonic and hypersonic flow, PhD Thesis, Minneapolis: University of Minnesota, 2012.Google Scholar
  42. 42.
    Rasheed, A., Hornung, H.G., Fedorov, A.V., and Malmuth, N.D., AIAA J., 2002, vol. 40, no. 3, p. 481.ADSCrossRefGoogle Scholar
  43. 43.
    Fedorov, A., Shiplyuk, A., Maslov, A., Burov, E., and Malmuth, N., J. Fluid Mech., 2003, vol. 479, p. 99.ADSCrossRefGoogle Scholar
  44. 44.
    Gaponov, S.A. and Terekhova, N.M., J. Appl. Mech. Tech. Phys., 2009, vol. 50, no. 5, p. 733.ADSCrossRefGoogle Scholar
  45. 45.
    Papp, J.L., Kenzakowski, D.C., and Dash, S.M., Extensions of a rapid engineering approach to modeling hypersonic laminar to turbulent transitional flows, AIAA Pap. 2005-892, 2005.CrossRefGoogle Scholar
  46. 46.
    Papp, J.L. and Dash, S.M., A rapid engineering approach to modeling hypersonic laminar to turbulent transitional flows for 2D and 3D geometries, AIAA Pap. 2008-2600, 2008.CrossRefGoogle Scholar
  47. 47.
    Papp, J.L. and Dash, S.M., Modeling hypersonic laminar to turbulent transitional flows for 3D geometries using a two-equation onset and intermittency transport models, AIAA Pap. 2012-0449, 2012.CrossRefGoogle Scholar
  48. 48.
    Wang, L. and Song Fu, Sci. China, Ser. G: Phys., Mech. Astron., 2009, vol. 52, no. 5, p. 768.ADSCrossRefGoogle Scholar
  49. 49.
    Wang, L. and Song Fu, Flow, Turbul. Combust., 2011, vol. 87, p. 165.CrossRefGoogle Scholar
  50. 50.
    Gorskii, V.V. and Pugach, M.A., High Temp., 2015, vol. 53, no. 2, p. 223.CrossRefGoogle Scholar
  51. 51.
    Mee, D.J., Boundary layer transition measurements in hypervelocity flows in a shock tunnel, AIAA Pap. 2001-0208, 2001.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Bykov
    • 1
  • A. M. Molchanov
    • 1
  • D. S. Yanyshev
    • 1
  • I. M. Platonov
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations