Advertisement

High Temperature

, Volume 56, Issue 1, pp 52–60 | Cite as

Modeling the Effect of Bubbles on a Pattern and Heat Transfer in a Turbulent Polydisperse Upward Two-Phase Flow after Sudden Enlargement in a Tube

  • M. A. Pakhomov
  • V. I. Terekhov
Heat and Mass Transfer and Physical Gasdynamics
  • 12 Downloads

Abstract

In this work, the numerical modeling of the flow pattern and heat transfer in a polydisperse bubbly turbulent flow after sudden enlargement in a tube is performed. The pattern of average and fluctuation twophase flows at small volumetric gas flow rate ratios (β ≤ 10%) is qualitatively similar to the one-phase liquid flow pattern. It is shown that small bubbles are present almost throughout the entire cross section of a tube, while great bubbles generally pass through the flow core and the shear mixing layer. The addition of air bubbles to a one-phase liquid flow appreciably intensifies heat transfer (up to two times), and these effects become stronger with an increase in the diameter of bubbles and the volumetric gas flow rate ratios gasratios.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, P.K., Control of Flow Separation, Washington: Hemisphere, 1976.Google Scholar
  2. 2.
    Alemasov, V.E., Glebov, G.A., and Kozlov, A.P., Termoanemometricheskie metody issledovaniya otryvnykh techenii (Thermoanemometric Methods for Studying Separated Flows), Kazan: Kazansk. Filial, Akad. Nauk SSSR, 1989.Google Scholar
  3. 3.
    Simpson, R.L., Prog. Aerosp. Sci., 1996, vol. 32, p. 457.CrossRefGoogle Scholar
  4. 4.
    Ota, T., Appl. Mech. Rev., 2000, vol. 53, p. 219.ADSCrossRefGoogle Scholar
  5. 5.
    Terekhov, V.I., Yarygina, N.I., and Zhdanov, R.F., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 4535.CrossRefGoogle Scholar
  6. 6.
    Aloui, F. and Souhar, M., Int. J. Multiphase Flow, 1996, vol. 22, p. 651.CrossRefGoogle Scholar
  7. 7.
    Aloui, F. and Souhar, M., Int. J. Multiphase Flow, 1996, vol. 22, p. 849.CrossRefGoogle Scholar
  8. 8.
    Rinne, A. and Loth, R., Exp. Therm. Fluid Sci., 1996, vol. 16, p. 152.CrossRefGoogle Scholar
  9. 9.
    Attou, A., Giot, M., and Seynhaeve, M., Int. J. Heat Mass Transfer, 1997, vol. 40, p. 3375.CrossRefGoogle Scholar
  10. 10.
    Aloui, F., Doubliez, L., Legarand, J., and Souhar, M., Exp. Therm. Fluid Sci., 1999, vol. 19, p. 118.CrossRefGoogle Scholar
  11. 11.
    Ahmed, W.H., Ching, C.Y., and Shoukri, M., Int. J. Heat Fluid Flow, 2008, vol. 29, p. 194.CrossRefGoogle Scholar
  12. 12.
    Voutsinas, A., Shakouchi, T., Tsujimoto, K., and Ando, T., J. Fluid Sci. Tech., 2009, vol. 4, p. 442.CrossRefGoogle Scholar
  13. 13.
    Wang, C.-C., Tseng, C.-Y., and Chen, Y.I., Int. J. Heat Mass Transfer, 2010, vol. 53, p. 4287.CrossRefGoogle Scholar
  14. 14.
    Krepper, E., Beyer, M., Frank, T., Lucas, D., and Prasser, H.-M., Nucl. Eng. Des., 2009, vol. 239, p. 2372.CrossRefGoogle Scholar
  15. 15.
    Krepper, E., Lucas, D., Frank, T., Prasser, H.-M., and Zwart, P.J., Nucl. Eng. Des., 2008, vol. 238, p. 1690.CrossRefGoogle Scholar
  16. 16.
    Lahey, R.T.Jr. and Drew, D.A., Nucl. Eng. Des., 2001, vol. 204, p. 29.CrossRefGoogle Scholar
  17. 17.
    Yeoh, G.H. and Tu, J.Y., Chem. Eng. Sci., 2004, vol. 59, p. 3125.CrossRefGoogle Scholar
  18. 18.
    Pakhomov, M.A. and Terekhov, V.I., High Temp., 2011, vol. 49, no. 5, p. 712.CrossRefGoogle Scholar
  19. 19.
    Pakhomov, M.A. and Terekhov, V.I., Tech. Phys., 2015, vol. 60, no. 9, p. 1268.CrossRefGoogle Scholar
  20. 20.
    Zaichik, L.I., Skibin, A.P., and Solov’ev, S.L., High Temp., 2004, vol. 42, no. 1, p. 111.CrossRefGoogle Scholar
  21. 21.
    Alipchenkov, V.M. and Zaichik, L.I., Fluid Dyn. (Engl. Transl.), 2010, vol. 45, no. 4, p. 574.ADSCrossRefGoogle Scholar
  22. 22.
    Mukin, R.V., Int. J. Multiphase Flow, 2014, vol. 62, p. 52.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zaikov, L.A., Strelets, M.Kh., and Shur, M.L., High Temp., 1996, vol. 34, no. 5, p. 713.Google Scholar
  24. 24.
    Manceau, R. and Hanjalic, K., Phys. Fluids, 2002, vol. 14, p. 744.ADSCrossRefGoogle Scholar
  25. 25.
    Fadai-Ghotbi, A., Manceau, R., and Boree, J., Flow, Turbul. Combust., 2008, vol. 81, p. 395.CrossRefGoogle Scholar
  26. 26.
    de Bertodano, M., Lee, S.J., Lahey, R.T.Jr., and Drew, D.A., J. Fluids Eng., 1990, vol. 112, p. 107.CrossRefGoogle Scholar
  27. 27.
    Loth, E., Int. J. Multiphase Flow, 2008, vol. 34, p. 523.CrossRefGoogle Scholar
  28. 28.
    Drew, D.A. and Lahey, R.T., Int. J. Multiphase Flow, 1987, vol. 13, p. 113.CrossRefGoogle Scholar
  29. 29.
    Tomiyma, A., Tamai, H., Zun, I., and Hosokawa, S., Chem. Eng. Sci., 2002, vol. 57, p. 1849.CrossRefGoogle Scholar
  30. 30.
    Politano, M., Carrica, P., and Converti, J., Int. J. Multiphase Flow, 2003, vol. 29, p. 1153.CrossRefGoogle Scholar
  31. 31.
    Antal, S.P., Lahey, R.T., and Flaherty, J.F., Int. J. Multiphase Flow, 1991, vol. 17, p. 635.CrossRefGoogle Scholar
  32. 32.
    Lehr, F. and Mewes, D., Chem. Eng. Sci., 2001, vol. 56, p. 1159.CrossRefGoogle Scholar
  33. 33.
    Nguyen, V.T., Song, C.-H., Bae, B.U., and Euh, D.J., Int. J. Multiphase Flow, 2013, vol. 54, p. 31.CrossRefGoogle Scholar
  34. 34.
    Yao, W. and Morel, C., Int. J. Heat Mass Transfer, 2004, vol. 47, p. 307.CrossRefGoogle Scholar
  35. 35.
    Pakhomov, M.A. and Terekhov, V.I., Int. J. Heat Mass Transfer, 2013, vol. 66, p. 210.CrossRefGoogle Scholar
  36. 36.
    Varaksin, A.Yu., High Temp., 2015, vol. 53, no. 3, p. 423.CrossRefGoogle Scholar
  37. 37.
    Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.CrossRefGoogle Scholar
  38. 38.
    Mikielewicz, D., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 207.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations