High Temperature

, Volume 56, Issue 1, pp 44–51 | Cite as

Calculation of the Optical Properties of Quartz Ceramics Based on Data on Its Structure

  • R. A. Mironov
  • M. O. Zabezhailov
  • M. Yu. Rusin
  • V. V. Cherepanov
  • S. P. Borodai
Thermophysical Properties of Materials


The optical parameters of quartz ceramics from a previously proposed identification method and simulation using different optical models of the material are compared. The identification method is based on deliberately measuring hemispherical spectral reflectances for layers of different thicknesses and solving the inverse problem using asymptotic formulas. Mathematical models are constructed based on the Mie theory on the assumption of independent scattering of electromagnetic radiation by fragments of the material. The material is considered as a polydisperse packing of spheres, the sizes of which are determined by data on the material structure. Both a grain surrounded by gas and a pore in monolithic material are considered as a scatterer. Data on the material structure were gathered using optical microscopy, static laser scattering, and mercury porosimetry. The best agreement with the results of the identification method is demonstrated by the model of ceramics in the form of a glass monolith with spherical voids. Comparative analysis eliminates uncertainty in the form of the scattering phase function and shows that the scattering is close to isotropic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pivinskii, Yu.E. and Suzdal’tsev, E.I., Kvartsevaya keramika i ogneupory (Quartz Ceramics and Refractory Materials), Moscow: Teploenergetik, 2008, vol. 1.Google Scholar
  2. 2.
    Howell, J.R., Siegel, R., and Menguc, M.P., Thermal Radiaiton Heat Transfer, Boca Raton, FL: CRC, 2010.Google Scholar
  3. 3.
    Sacadura, J.F., Heat Transfer Eng., 2011, vol. 32, no. 9, p. 754.ADSCrossRefGoogle Scholar
  4. 4.
    Case, K.M. and Zweifel, P.F., Linear Transport Theory, Reading, MA: Addison-Wesley, 1967.MATHGoogle Scholar
  5. 5.
    Siewert, C.E., J. Quant. Spectrosc. Radiat. Transfer, 2002, vol. 72, p. 299.ADSCrossRefGoogle Scholar
  6. 6.
    Petrov, V.A., J. Eng. Phys. Thermophys., 1993, vol. 64, no. 6, p. 583.CrossRefGoogle Scholar
  7. 7.
    Moiseev, S.S., Petrov, V.A., and Stepanov, S.V., Int. J. Thermophys., 1990, vol. 11, no. 3, p. 587.ADSCrossRefGoogle Scholar
  8. 8.
    Moiseev, S.S., Petrov, V.A., and Stepanov, S.V., High Temp., 2006, vol. 44, no. 5, p. 760.CrossRefGoogle Scholar
  9. 9.
    Dombrovsky, L.A., Radrianalisoa, J., and Baillis, D., Appl. Opt., 2005, vol. 44, no. 33, p. 7021.ADSCrossRefGoogle Scholar
  10. 10.
    Zege, E.P., Ivanov, A.P., and Katsev, I.L., Perenos izobrazheniya v rasseivayushchei srede (Image Transfer in a Scattering Medium), Minsk: Nauka i Tekhnika, 1985.Google Scholar
  11. 11.
    Zabezhailov, M.O. and Borodai, S.P., Refract. Ind. Ceram., 2009, vol. 50, p. 236.CrossRefGoogle Scholar
  12. 12.
    Mironov, R.A., Zabezhailov, M.O., and Borodai, S.P., Tepl. Protsessy Tekh., 2013, vol. 5, no. 6, p. 262.Google Scholar
  13. 13.
    Mironov, R.A., Zabezhailov, M.O., Rusin, M.Yu., Cherepanov, V.V., and Borodai, S.P., High Temp., 2016, vol. 54, no. 5, p. 682.CrossRefGoogle Scholar
  14. 14.
    Drolen, B.L. and Tien, C.L., J. Thermophys. Heat Transfer, 1987, vol. 1, no. 1, p. 63.ADSCrossRefGoogle Scholar
  15. 15.
    Ivezic, Z. and Menguc, M.P., Int. J. Heat Mass Transfer, 1996, vol. 39, no. 4, p. 811.CrossRefGoogle Scholar
  16. 16.
    Drolen, B.L. and Tien, C.L., J. Thermophys. Heat Transfer, 1994, vol. 1, no. 1, p. 63.ADSCrossRefGoogle Scholar
  17. 17.
    van de Hulst, H.C., Light Scattering by Small Particles, New York: Wiley, 1957.Google Scholar
  18. 18.
    Bohren, C. and Huffman, D., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.Google Scholar
  19. 19.
    Allen, T., Powder Sampling and Particle Size Determination, vol. 1 of Particle Size Measurement, London: Chapman and Hall, 1997.Google Scholar
  20. 20.
    Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption: Texture of Dispersed and Porous Materials), Novosibirsk: Nauka, 1999. 471 p.Google Scholar
  21. 21.
    Kryukova, E.B., Plotnichenko, V.G., and Dianov, E.M., Proc. SPIE, 2000, vol. 4083, p. 71.ADSCrossRefGoogle Scholar
  22. 22.
    Voronkova, E.M., Opticheskie materialy dlya infrakrasnoi tekhniki (Optical Materials for Infrared Technology), Moscow: Nauka, 1965.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. A. Mironov
    • 1
  • M. O. Zabezhailov
    • 1
  • M. Yu. Rusin
    • 1
  • V. V. Cherepanov
    • 2
  • S. P. Borodai
    • 1
  1. 1.ORPE “Technologiya” named after A.G. RomashinObninskRussia
  2. 2.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations