High Temperature

, Volume 55, Issue 5, pp 795–801 | Cite as

Estimate of the power of radiative heat transfer in a plasmon nanocomposite

Heat and Mass Transfer and Physical Gasdynamics
  • 17 Downloads

Abstract

The current level of technologies makes it possible to create polymers containing nanoparticles with a distance at 10 nm between them. At such distances, the power of radiative heat transfer between particles swiftly increases due to the near-field interaction. The power of radiative heat transfer between nanoparticles is calculated using fluctuation electrodynamics. Despite an essential increase in the power due to the specified effects, radiative transfer remains several orders of magnitude less than phonon thermal conductivity and does not affect heat transfer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pan’kov, A.A., High Temp., 1999, vol. 37, no. 3, p. 384.Google Scholar
  2. 2.
    Zarubin, V.S., Kuvyrkin, G.N., and Savel’eva, I.Yu., High Temp., 2015, vol. 243, no. 2, p. 234.CrossRefGoogle Scholar
  3. 3.
    Zverev, V.G., Gol’din, V.D., and Nazarenko, V.A., High Temp., 2008, vol. 46, no. 1, p. 108.CrossRefGoogle Scholar
  4. 4.
    Polder, D. and Van Hove, M., Phys. Rev. B: Solid State, 1971, vol. 4, no. 10, p. 3303.ADSCrossRefGoogle Scholar
  5. 5.
    Levin, M.L. and Rytov, S.M., Teoriya ravnovesnykh teplovykh fluktuatsii v elektrodinamike (Theory of Equilibrium Thermal Fluctuations in Electrodynamics), Moscow: Nauka, 1967.Google Scholar
  6. 6.
    Jackson, J.L. and Humphrey, J.M., Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 50, no. 24, 18517.CrossRefGoogle Scholar
  7. 7.
    Basu, S. and Zhang, Z.M., J. Appl. Phys., 2009, vol. 105, no. 9, 093535.ADSCrossRefGoogle Scholar
  8. 8.
    Joulain, K., Carminati, R., Mulet, J.-P., and Greffet, J.-J., Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 68, no. 24, 245405.ADSCrossRefGoogle Scholar
  9. 9.
    Mulet, J.-P., Joulain, K., Carminati, R., and Greffet, J.-J., Microscale Thermophys. Eng., 2002, vol. 6, no. 3, p. 209.CrossRefGoogle Scholar
  10. 10.
    Palik, E., Handbook of Optical Constansts of Solids, New York: Academic, 1998, vol.1.Google Scholar
  11. 11.
    Biehs, S.A., Eur. Phys. J. B, 2007, vol. 58, no. 4, p. 423.ADSCrossRefGoogle Scholar
  12. 12.
    Francoeur, M., Meng, M.P., and Vaillon, R., Appl. Phys. Lett., 2008, vol. 93, no. 4, 043109.ADSCrossRefGoogle Scholar
  13. 13.
    Narayanaswamy, A. and Chen, G., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, no. 7, 075125.ADSCrossRefGoogle Scholar
  14. 14.
    Rousseau, E., Siria, A., Jourdan, G., Volz, S., Comin, F., Chevrier, J., and Greffet, J.-J., Nat. Photon, 2009, vol. 3, no. 9, p. 514.ADSCrossRefGoogle Scholar
  15. 15.
    Ottens, R.S., Quetschke, V., Wise, S., et al., Phys. Rev. Lett., 2011, vol. 107, no. 1, 014301.ADSCrossRefGoogle Scholar
  16. 16.
    Shen, S., Narayanaswamy, A., and Chen, G., Nano Lett., 2009, vol. 9, no. 8, p. 2909.ADSCrossRefGoogle Scholar
  17. 17.
    Shi, J., Li, P., Liu, B., and Shen, S., Appl. Phys. Lett., 2013, vol. 102, no. 18, 183114.ADSCrossRefGoogle Scholar
  18. 18.
    St-Gelais, R., Guha, B., Zhu, L., Fan, S., and Lipson, M., Nano Lett., 2014, vol. 14, no. 12, p. 6971.ADSCrossRefGoogle Scholar
  19. 19.
    Zhai, X., Lai, J., Liang, H., and Chen, S., J. Appl. Phys., 2010, vol. 108, no. 7, 074507.ADSCrossRefGoogle Scholar
  20. 20.
    Ilic, O., Jablan, M., Joannopoulos, J.D., et al., Opt. Express, 2012, vol. 20, no. S3, p. A366.CrossRefGoogle Scholar
  21. 21.
    Basu, S., Zhang, Z.M., and Fu, C.J., Int. J. Energy Res., 2009, vol. 33, no. 13, p. 1203.CrossRefGoogle Scholar
  22. 22.
    Chapuis, P.-O., Jablan, M., Joannopoulos, J.D., Celanovic, I., and Soljacic, M., Appl. Phys. Lett., 2008, vol. 92, no. 20, 201906.ADSCrossRefGoogle Scholar
  23. 23.
    Kolokolov, A.A. and Skrotskii, G.V., Phys.—Usp., 1992, vol. 35, no. 12, p. 1089.ADSCrossRefGoogle Scholar
  24. 24.
    Phan, A.D., Phan, T.-L., and Woods, L.M., J. Appl. Phys., 2013, vol. 114, no. 21, 214306.ADSCrossRefGoogle Scholar
  25. 25.
    Boginskaya, I.A., Gusev, A.V., Mailyan, K.A., et al., J. Commun. Technol. Electron., 2011, vol. 56, no. 1, p. 66.CrossRefGoogle Scholar
  26. 26.
    Joulain, K., Mulet, J.-P., Marquier, F., Carminati, R., and Greffet, J.-J., Surf. Sci. Rep., 2005, vol. 57, no. 3, p. 59.ADSCrossRefGoogle Scholar
  27. 27.
    Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 8: Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Fizmatlit, 2003.Google Scholar
  28. 28.
    Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon, 1964.Google Scholar
  29. 29.
    Rakic A.D., Djurišic, A.B., Elazar, J.M., and Majewski, M.L., Appl. Opt., 1998, vol. 37, no. 22, p. 5271.ADSCrossRefGoogle Scholar
  30. 30.
    Fu, C.J. and Tan, W.C., J. Quant. Spectrosc. Radiat. Transfer, 2009, vol. 110, no. 12, p. 1027.ADSCrossRefGoogle Scholar
  31. 31.
    Basu, S., Lee, B.J., and Zhang, Z.M., J. Heat Transfer, 2010, vol. 132, no. 2, 023302.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. A. Remnev
    • 1
  • A. P. Vinogradov
    • 1
    • 2
  • A. A. Pukhov
    • 1
    • 2
    • 3
  1. 1.Dukhov Research Institute of AutomaticsMoscowRussia
  2. 2.Institute for Theoretical and Applied ElectrodynamicsRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyState UniversityDolgoprudnyi, Moscow oblastRussia

Personalised recommendations