High Temperature

, Volume 55, Issue 5, pp 711–717 | Cite as

Investigation of melting at the uranium γ phase by quantum and classical molecular dynamics methods

  • K. P. Migdal
  • P. A. Pokatashkin
  • A. V. Yanilkin
Thermophysical Properties of Materials
  • 26 Downloads

Abstract

Melting at the high-temperature uranium γ phase at pressures up to 0.8 TPa and temperatures up to 2 × 104 K is studied using quantum and classical molecular dynamics methods. The position of the equilibrium melting curve is estimated based on quantum calculations according to the Lindemann criterion. An interatomic-interaction potential is developed for classical molecular dynamics simulation of the properties of uranium in the γ phase and liquid state. The melting curve is calculated using the modified Z method. The curve is in agreement with the known experimental data at pressures below 0.1 TPa and the found estimate. The calculated melting curve is also compared with the Simon–Glatzel equation theoretical model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yoo, C.-S., Cynn, H., and Söderlind, P., Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 57, 10359.ADSCrossRefGoogle Scholar
  2. 2.
    Vocadlo, L., Alfé, D., Price, G.D., and Gillan, M.J., J. Chem. Phys., 2004, vol. 120, no. 6, p. 2872.ADSCrossRefGoogle Scholar
  3. 3.
    Cazorla, C., Alfé, D., and Gillan, M.J., Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 85, 064113.ADSCrossRefGoogle Scholar
  4. 4.
    Alfé, D., Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 79, 060101.ADSCrossRefGoogle Scholar
  5. 5.
    Lepeshkin, S.V., Magnitskaya, M.V., and Maksimov, E.G., JETP Lett., 2009, vol. 89, no. 11, p. 586.ADSCrossRefGoogle Scholar
  6. 6.
    Minakov, D.V. and Levashov, P.R., Phys. Rev. B, 2015, vol. 92, 224102.ADSCrossRefGoogle Scholar
  7. 7.
    Petrov, Yu.V., Migdal, K.P., Inogamov, N.A., and Zhakhovsky, V.V., Appl. Phys. B, 2015, vol. 119, p. 401.ADSCrossRefGoogle Scholar
  8. 8.
    Li, J.H., Ren, Q.B., Lu, C.H., Lu, L., Dai, Y., and Liu, B.X., J. Alloys Compd., 2012, vol. 516, p. 139.CrossRefGoogle Scholar
  9. 9.
    Söderlind, P., Grabowski, B., Yang, L., Landa, A., Björkman, T., Souvatzis, P., and Eriksson, P., Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 85, 060301.CrossRefGoogle Scholar
  10. 10.
    Hood, R.Q., Yang, L.H., and Moriarty, J.A., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 78, 024116.ADSCrossRefGoogle Scholar
  11. 11.
    Yanilkin, A.V., High Temp., 2017, vol. 55, no. 1, p. 40.CrossRefGoogle Scholar
  12. 12.
    Alfé, D., Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 68, 064423.ADSCrossRefGoogle Scholar
  13. 13.
    Beeler, B., Deo, C., Baskes, M., and Okuniewski, M., J. Nucl. Mater., 2013, vol. 433, p. 143.ADSCrossRefGoogle Scholar
  14. 14.
    Pascuet, M.I., Bonny, G., and Fernandez, J.R., J. Nucl. Mater., 2012, vol. 424, p. 158.ADSCrossRefGoogle Scholar
  15. 15.
    Smirnova, D.E., Starikov, S.V., and Stegailov, V.V., J. Phys.: Condens. Matter, 2012, vol. 24, 015702.ADSGoogle Scholar
  16. 16.
    Fernández, J.R. and Pascuet, M.I., Model. Simul. Mater. Sci. Eng., 2014, vol. 22, 055019.ADSCrossRefGoogle Scholar
  17. 17.
    Daw, M.S. and Baskes, M.I., Phys. Rev. B: Condens. Matter Mater. Phys., 1984, vol. 29, p. 6443.ADSCrossRefGoogle Scholar
  18. 18.
    Baskes, M.I., Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 46, p. 2727.ADSCrossRefGoogle Scholar
  19. 19.
    Wang, S., Zhang, G., Liu, H., and Song, H., J. Chem. Phys., 2013, vol. 138, 134101.ADSCrossRefGoogle Scholar
  20. 20.
    Kresse, G. and Fürthmuller, J., Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, 11169.ADSCrossRefGoogle Scholar
  21. 21.
    Kresse, G. and Joubert, D., Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 59, p. 1758.ADSCrossRefGoogle Scholar
  22. 22.
    Blöchl, P., Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 50, 17953.ADSCrossRefGoogle Scholar
  23. 23.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.ADSCrossRefGoogle Scholar
  24. 24.
    Kuksin, A.Yu., Norman, G.E., Stegailov, V.V., and Yanilkin, A.V., Comput. Phys. Commun., 2007, vol. 177, p. 34.ADSCrossRefGoogle Scholar
  25. 25.
    Kanel’, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Udarno-volnovye yavleniya v kondensirovannykh sredakh (Shock-Wave Phenomena in Condensed Media), Moscow: Yanus-K, 1996.Google Scholar
  26. 26.
    Smirnova, D.E., Kuksin, A.Yu., Starikov, S.V., and Stegailov, V.V., Phys. Met. Metallogr., 2015, vol. 116, no. 5, p. 445.ADSCrossRefGoogle Scholar
  27. 27.
    Brommer, P. and Gahler, F.G., Modell. Simul. Mater. Sci. Eng., 2007, vol. 15, no. 3, p. 295.ADSCrossRefGoogle Scholar
  28. 28.
    Brommer, P. and Gahler, F.G., Philos. Mag., 2006, vol. 86, nos. 6–8, p. 753.ADSCrossRefGoogle Scholar
  29. 29.
    Stegailov, V. and Zhilyaev, P., Contrib. Plasma Phys., 2015, vol. 55, nos. 2–3, p. 164.ADSCrossRefGoogle Scholar
  30. 30.
    Belashchenko, D.K., Smirnova, D.E., and Ostrovski, O.I., High Temp., 2010, vol. 48, no. 3, p. 363.CrossRefGoogle Scholar
  31. 31.
    Belashchenko, D.K., High Temp., 2015, vol. 53, no. 5, p. 649.CrossRefGoogle Scholar
  32. 32.
    Recoules, V., Clérouin, J., Zérah, G., Anglade, P.M., and Mazevet, S., Phys. Rev. Lett., 2006, vol. 96, 055503.ADSCrossRefGoogle Scholar
  33. 33.
    Plimpton, S., J. Comput. Phys., 1995, vol. 117, p. 1.ADSCrossRefGoogle Scholar
  34. 34.
    Kechin, V.V., Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 65, 052102.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. P. Migdal
    • 1
  • P. A. Pokatashkin
    • 1
  • A. V. Yanilkin
    • 1
  1. 1.Dukhov Research Institute of AutomaticsMoscowRussia

Personalised recommendations