High Temperature

, Volume 55, Issue 5, pp 631–637 | Cite as

The longitudinal electric current in Maxwellian collisional plasma generated by a transverse electromagnetic wave

Plasma Investigations
  • 16 Downloads

Abstract

Allowance for nonlinearity leads to the appearance of the longitudinal electric current directed along a wave vector. This longitudinal current is orthogonal to the known transverse classical current at linear analysis. The kinetic Vlasov equation for collisional Maxwellian plasma is used upon the determination of the longitudinal electric current. The Bhatnagar–Gross–Krook collision integral is applied. The electron distribution function is taken from the Vlasov equation in the approximation quadratic over an electromagnetic field. The formula for the calculation of the electric current is derived. When the collision frequency tends to zero, all results for collisional plasma transfer into a corresponding known formula for collisionless plasma. The case of small wave numbers is considered. The value of the longitudinal current when the collision frequency tends to zero also transfers into the known expression for the current in collisionless plasma. The dependence of the dimensionless current on the wave number, frequency of electromagnetic field oscillations, and the collision frequency of electrons with plasma particles is studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhatnagar, P.L., Gross, E.P., and Krook, M., Phys. Rev., 1954, vol. 94, p. 511.ADSCrossRefGoogle Scholar
  2. 2.
    Welander, P., Ark. Fys., 1954, vol. 7, p. 507.MathSciNetGoogle Scholar
  3. 3.
    Opher, M., Morales, G.J., and Leboeuf, J.N., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2002, vol. 66, 016407.ADSCrossRefGoogle Scholar
  4. 4.
    Latyshev, A.V. and Yushkanov, A.A., in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma), vol. 7, part 1: Matematicheskoe modelirovanie v nizkotemperaturnoj plazme (Mathematical Simulation in Low-Temperature Plasma), Fortov, V.E., Ed., Moscow: Nauka, 2008, p. 159.Google Scholar
  5. 5.
    Ginzburg, V.L. and Gurevich, A.V., Sov. Phys. Usp., 1960, vol. 3, no. 1, p. 115.ADSCrossRefGoogle Scholar
  6. 6.
    Tsytovich, V.N., Sov. Phys. Usp., 1967, vol. 9, no. 6, p. 805.ADSCrossRefGoogle Scholar
  7. 7.
    Kovrizhnykh, L.M. and Tsytovich, V.N., Zh. Eksp. Teor. Fiz., 1965, vol. 47, no. 4, p. 1454.Google Scholar
  8. 8.
    Kovrizhnykh, L.M. and Tsytovich, V.H., Zh. Eksp. Teor. Fiz., 1964, vol. 46, p. 2212.Google Scholar
  9. 9.
    Tsytovich, V.N., Nelineinye effekty v plazme (Nonlinear Effects in Plasma), Moscow: Leland, 2014.Google Scholar
  10. 10.
    Bezhanov, S.G. and Uryupin, S.A., Quantum Electron. (Moscow), 2013, vol. 43, no. 11, p. 1048.ADSCrossRefGoogle Scholar
  11. 11.
    Grishkov, V.E. and Uryupin, S.A., in Mater. XLI Mezhdun. (Zvenigorodskaya) konf. po fizike plazmy i UTS (Proc. XLI Int. (Zvenigorod) Conf. On Plasma Physics and Controlled Thermonuclear Fusion), Moscow: PLAZMA, 2014, p. 315.Google Scholar
  12. 12.
    Grishkov, V.E. and Uryupin, S.A., JETP Lett., 2012, vol. 95, no. 12, p. 626.ADSCrossRefGoogle Scholar
  13. 13.
    Shukla, P.K. and Eliasson, B., Phys.—Usp., 2010, vol. 53, no. 1, p. 51.ADSCrossRefGoogle Scholar
  14. 14.
    Vasilyak, L.M., Vetchinin, S.P., Panov, V.A., Pecherkin, V.Ya., and Son, E.E., High Temp., 2014, vol. 52, no. 6, p. 797.CrossRefGoogle Scholar
  15. 15.
    Isupov, M.V., Fedoseev, A.V., Sukhinin, G.I., and Ulanov, I.M., High Temp., 2015, vol. 53, no. 2, p. 179.CrossRefGoogle Scholar
  16. 16.
    Khomkin, A.L., D’yachkov, L.G., and Shumikhin, A.S., High Temp., 2013, vol. 51, no. 3, p. 287.CrossRefGoogle Scholar
  17. 17.
    Akhmediev, N.N., Mel’nikov, I.V., and Robur, L.J., Laser Phys., 1994, vol. 4, no. 6, p. 1194.Google Scholar
  18. 18.
    Latyshev, A.V. and Yushkanov, A.A., Plasma Phys. Rep., 2015, vol. 41, no. 9, p. 715.ADSCrossRefGoogle Scholar
  19. 19.
    Latyshev, A.V. and Yushkanov, A.A., Fluid Dyn., 2015, vol. 50, no. 6, p. 820.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Trubnikov, B.A., Teoriya plazmy (Theory of Plasma), Moscow: Energoatomizdat, 1996.Google Scholar
  21. 21.
    Zhdanov, S.K. and Trubnikov, V.A., Zh. Eksp. Teor. Fiz., 1977, vol. 72, p. 488.ADSGoogle Scholar
  22. 22.
    Zhdanov, V.M., Yavleniya perenosa v gazakh i plazme (Transport Phenomena in Gases and Plasmas), Moscow: Mosk. Inzh.-Fiz. Inst., 2008.Google Scholar
  23. 23.
    Latyshev, A.V., Tereshina, T.V., and Yushkanov, A.A., Sib. Zh. Ind. Mat., 2010, vol. 13, no. 3, p. 76.Google Scholar
  24. 24.
    Latyshev, A.V., Tereshina, T.V., and Yushkanov, A.A., Vestn. St. Petersburg. Gos. Univ., Ser. 1, 2010, no. 1, p. 87.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Moscow State Regional UniversityMoscowRussia

Personalised recommendations