High Temperature

, Volume 55, Issue 5, pp 672–677 | Cite as

Dynamics of plasma and ion flux in a vacuum neutron tube

  • A. V. Agafonov
  • V. P. Tarakanov
  • S. G. Kladko
  • S. P. Maslennikov
  • D. S. Stepanov
  • E. Ya. Shkol’nikov
Plasma Investigations


Results of the numerical simulation of the formation of the ion beam in the accelerating gap of a vacuum neutron tube are presented. Calculations are performed with the KARAT code in a two-dimensional nonstationary formulation for plasma formed in arc discharge and inflowing into an accelerating gap with the given time dependences of parameters (density, expansion velocity). The small duration of the vacuum arc leads to a considerable change of parameters of inflowing plasma during the accelerating pulse. Two geometries are considered: the conventional and sectioned diode, in which the total voltage is divided between the anode, intermediate electrode, and cathode.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sapozhnikov, M.G., in Sb. mater. Mezhdun. nauch.-tekhn. konf. “Portativnye generatory neitronov i tekhnologii na ikh osnove” (Proc. Int. Sci.-Tech. Conf. on Portable Neutron Generators and Technologies Based on Them), Moscow, 2012, p. 47.Google Scholar
  2. 2.
    Mesyats, G.A. and Barengol’ts, S.A., Phys.—Usp., 2002, vol. 45, no. 10, p. 1001.ADSCrossRefGoogle Scholar
  3. 3.
    Londer, Ya.I. and Ul’yanov, K.N., High Temp., 2014, vol. 52, no. 6, p. 787.CrossRefGoogle Scholar
  4. 4.
    Gabovich, M.D., Fizika i tekhnika plazmennykh istochnikov ionov (Physics and Technology of Plasma Ion Sources), Moscow: Atomizdat, 1972.Google Scholar
  5. 5.
    Gabovich, M.D., Pleshivtsev, N.V., and Semashko, N.N., Puchki ionov i atomov dlya upravlyaemogo termoyadernogo sinteza i tekhnologicheskikh tselei (Beams of Ions and Atoms for Controlled Thermonuclear Fusion and Technological Purposes), Moscow: Energoatomizdat, 1986.Google Scholar
  6. 6.
    Tarakanov, V.P., User’s Manual for Code KARAT, Springfield, VA: Berkeley Research Associates, 1992.Google Scholar
  7. 7.
    Swain, D.W., Goldstein, S.A., Kelly, J.G., and Hadley, G.R., J. Appl. Phys., 1975, vol. 46, no. 10, p. 4604.ADSCrossRefGoogle Scholar
  8. 8.
    Swain, D.W., Golgstein, S.A., Hadley, G.R., and Mix, L.P., in Proc. Int. Topical Conf. on Electron Beam Research and Technology, Albuquerque, NM: Sandia, 1976, vol. 1, p. 262.Google Scholar
  9. 9.
    Mesyats, G.A., Vzryvnaya elektronnaya emissiya (Explosive Electron Emission), Moscow: Fizmatlit, 2011.Google Scholar
  10. 10.
    Bugaev, A.S., Gushenets, V.I., Nikolaev, A.G., Oks, E.M., and Yushkov, G.Yu., Tech. Phys., 2000, vol. 45, no. 9, p. 1135.CrossRefGoogle Scholar
  11. 11.
    Maslennikov, S.P., Pastukhov, N.A., Chebotarev, A.V., Shkol’nikov, E.Ya., Gorbunov, M.A., and Yurkov, D.I., Yad. Fiz. Inzh., 2014, vol. 5, no. 3, p. 229.Google Scholar
  12. 12.
    Agafonov, A.V. and Tarakanov, V.P., Phys. Part. Nucl. Lett., 2014, vol. 11, no. 5, p. 573.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Agafonov
    • 1
  • V. P. Tarakanov
    • 2
  • S. G. Kladko
    • 3
  • S. P. Maslennikov
    • 3
  • D. S. Stepanov
    • 3
  • E. Ya. Shkol’nikov
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations