Skip to main content
Log in

Optical investigations of multicomponent plasma of capillary discharge. Supersonic outflow regime

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

We present the results of spectroscopic investigations of the plasma of an impulse discharge in a capillary with an ablation wall made of carbon-containing polymer, within the discharge pulse parameters providing the supersonic flow regime of a plasma jet. Based on a 2D-matrix high resolution spectra containing Hα, Cu I, Cu II, C I, C II, and CN and the Swan molecular bands, we obtain spatiotemporal distributions of the electron number density and the plasma temperature in the capillary and the supersonic plasma jet. We reveal the peculiarities of the spatial distribution of the electron number density and of the spectral component intensity within both above stated zones, conditioned, in particular, by achievement, in the hot central zone, of an electron temperature above the “normal” temperature, as well as by essential nonisobaricity of the initial section of the plasma jet. The emission properties of the high-temperature jet core–the intensities and the profiles of the Hα and Hβ Balmer lines, relative intensities of the C II and O II ion lines–registered with high temporal (10 μs) and spatial (20–30 μm) resolution make it possible to discover the main regularities in the spatiotemporal distributions of pressure, temperature, and ionization degree in the capillary and in the supersonic heterogeneous jet of the erosion discharge. Due to the presence in the flow of the molecular components displaying their emission properties at the jet periphery, we manage to obtain information on the plasma parameters within the zone of formation of the “intercepting” shocks in the supersonic jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ender, A.Y., Kuznetsov, V.I., Kolyshkin, I.N., and Shchetinina, A.N., Open Plasma Phys. J., 2011, vol. 4, p. 40.

    Article  Google Scholar 

  2. Pashchina, A.S., Klimov, A.I., and Efimov, A.V., AIAA 2014-0517, 2014.

    Google Scholar 

  3. Avramenko, R.F., Bakhtin, B.I., Nikolaeva, V.I., Poskacheeva, L.P., and Shirokov, N.N., Zh. Tekh. Fiz., 1990, vol. 60, no. 12, p. 57.

    Google Scholar 

  4. Ershov, A.P., Timofeev, I.B., Chuvashev, S.N., and Shibkov, V.M., in Sharovaya molniya v laboratorii (Ball Lightning in the Laboratory), Avramenko, R.F., Klimov, A.I., and Sinkevich, O.A., Eds., Moscow: Khimiya, 1994, p. 112.

  5. Leonov, S.B. and Luk’yanov, G.A., J. Appl. Mech. Tech. Phys., 1994, vol. 35, no. 5, p. 653.

    Article  ADS  Google Scholar 

  6. Luk’yanov, G.A., Sverkhzvukovye strui plazmy (Supersonic Plasma Jets), Leningrad: Mashinostroenie, 1985.

    Google Scholar 

  7. Min’ko, L.Ya., Poluchenie i issledovanie impul’snykh plazmennykh potokov (Generation and Investigation of Pulsed Plasma Flows), Minsk: Nauka i Tekhnika, 1970.

    Google Scholar 

  8. Ogurtsova, N.N., Podmoshenskii, I.V., and Shelemina, V.M., Teplofiz. Vys. Temp., 1968, vol. 6, no. 1, p. 48.

    Google Scholar 

  9. Pashchina, A.S. and Klimov, A.I., Khim. Fiz., 2014, vol. 33, no. 2, p. 78.

    Google Scholar 

  10. Pashchina, A.S., Efimov, A.V., and Chinnov, V.F., High Temp., 2016, vol. 54, no. 4, p. 488.

    Article  Google Scholar 

  11. Eremin, A.V., High Temp., 2013, vol. 51, no. 5, p. 673.

    Article  Google Scholar 

  12. Eremin, A.V., Prog. Energy Combust. Sci., 2012, vol. 38, no. 1, p. 1.

    Article  Google Scholar 

  13. Smirnov, B.M., Phys.—Usp., 2011, vol. 54, no. 7, p. 691.

    Article  ADS  Google Scholar 

  14. Abramovich, G.N., Prikladnaya gazovaya dinamika (Applied Gas Dynamics), Moscow: Nauka, 1991.

    Google Scholar 

  15. Belov, S.N., Zh. Prikl. Spektrosk., 1978, vol. 28, no. 4, p. 605.

    ADS  Google Scholar 

  16. Zapryagaev, V.I. and Kiselev, N.P., J. Appl. Mech. Tech. Phys., 2009, vol. 50, no. 3, p. 104.

    Article  Google Scholar 

  17. Gubanov, D.A., Zapryagaev, V.I., and Kiselev, N.P., Vestn. Novosib. Gos. Univ., Ser. Fiz., 2013, vol. 8, no. 1, p. 44.

    Google Scholar 

  18. Gubbings, J.C., Ingham, J., and Johnson, D., Flow in a supersonic jet expanding from a convergent nozzle, Tech. rep. no. 1197, Liverpool: HM Stationery Office, 1972.

    Google Scholar 

  19. Descoeudres, A., Characterization of Electrical Discharge Machining Plasmas, Lausanne: Ecole Polytechnique Federale de Lausanne, 2006.

    Google Scholar 

  20. Vitel, Y., Gavrilova, T.V., D’yachkov, L.G., and Kurilenkov, Y.K., J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 83, nos. 3–4, p. 387.

    Article  ADS  Google Scholar 

  21. Lochte-Holtgreven, W., Evaluation of plasma parameters, in Plasma Diagnostics, Lochte-Holtgreven, W., Ed., Amsterdam: North Holland, 1968, p. 135.

  22. Lochte-Holtgreven, W., Production and measurement of high temperatures, Rep. Progr. Phys., 1958, vol. 21, p. 312.

    Google Scholar 

  23. Inglis, D.R. and Teller, E., Astrophys. J., 1939, vol. 90, p. 439.

    Article  ADS  Google Scholar 

  24. Ogurtsova, N.N., Podmoshenskii, I.V., and Shelemina, V.M., Teplofiz. Vys. Temp., 1974, vol. 12, no. 1, p. 5.

    Google Scholar 

  25. Larenz, R.-W. and Bartels, H., Naturwissenschaften, 1950, vol. 37, no. 7, p. 164.

    Article  ADS  Google Scholar 

  26. Larenz, R.W., Z. Phys., 1951, vol. 129, no. 3, p. 327.

    Article  ADS  Google Scholar 

  27. Belyaletdinov, T.Sh., Goryachev, S.V., Efimov, A.V., Isakaev, E.Kh., and Chinnov, V.F., Opt. Spectrosc., 2010, vol. 109, no. 5, p. 662.

    Article  ADS  Google Scholar 

  28. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.

    Google Scholar 

  29. Asinovskii, E.I., Kirillin, A.V., and Nizovskii, V.L., Stabilizirovannye elektricheskie dugi i ikh primenenie v teplofizicheskom eksperimente (Stabilized Electric Arcs and Their Application in Heat Physical Experiments), Moscow: Fizmatlit, 2008.

    Google Scholar 

  30. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Dolgoprudnyi: Intellekt, 2009.

    Google Scholar 

  31. Dean, A.J., Hanson, R.K., and Bowman, C.T., J. Phys. Chem., 1991, vol. 95, p. 3180.

    Article  Google Scholar 

  32. Biberman, L.M. and Norman, G.E., Phys.—Usp., 1967, vol. 10, no. 1, p. 52.

    Article  ADS  Google Scholar 

  33. Petrov, Yu.I., Fizika malykh chastits (Physics of Small Particles), Moscow: Nauka, 1982.

    Google Scholar 

  34. Bohren, C. and Huffman, D., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.

    Google Scholar 

  35. Smirnov, B.M., Protsessy s uchastiem malykh chastits v vozbuzhdennom ili ionizovannom gaze (Processes Involving Small Particles in an Excited or Ionized Gas), Moscow: Logos, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pashchina.

Additional information

Original Russian Text © A.S. Pashchina, A.V. Efimov, V.F. Chinnov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 5, pp. 669–684.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashchina, A.S., Efimov, A.V. & Chinnov, V.F. Optical investigations of multicomponent plasma of capillary discharge. Supersonic outflow regime. High Temp 55, 650–664 (2017). https://doi.org/10.1134/S0018151X17040174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17040174

Navigation