High Temperature

, Volume 55, Issue 5, pp 650–664 | Cite as

Optical investigations of multicomponent plasma of capillary discharge. Supersonic outflow regime

Plasma Investigations
  • 22 Downloads

Abstract

We present the results of spectroscopic investigations of the plasma of an impulse discharge in a capillary with an ablation wall made of carbon-containing polymer, within the discharge pulse parameters providing the supersonic flow regime of a plasma jet. Based on a 2D-matrix high resolution spectra containing Hα, Cu I, Cu II, C I, C II, and CN and the Swan molecular bands, we obtain spatiotemporal distributions of the electron number density and the plasma temperature in the capillary and the supersonic plasma jet. We reveal the peculiarities of the spatial distribution of the electron number density and of the spectral component intensity within both above stated zones, conditioned, in particular, by achievement, in the hot central zone, of an electron temperature above the “normal” temperature, as well as by essential nonisobaricity of the initial section of the plasma jet. The emission properties of the high-temperature jet core–the intensities and the profiles of the Hα and Hβ Balmer lines, relative intensities of the C II and O II ion lines–registered with high temporal (10 μs) and spatial (20–30 μm) resolution make it possible to discover the main regularities in the spatiotemporal distributions of pressure, temperature, and ionization degree in the capillary and in the supersonic heterogeneous jet of the erosion discharge. Due to the presence in the flow of the molecular components displaying their emission properties at the jet periphery, we manage to obtain information on the plasma parameters within the zone of formation of the “intercepting” shocks in the supersonic jet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ender, A.Y., Kuznetsov, V.I., Kolyshkin, I.N., and Shchetinina, A.N., Open Plasma Phys. J., 2011, vol. 4, p. 40.CrossRefGoogle Scholar
  2. 2.
    Pashchina, A.S., Klimov, A.I., and Efimov, A.V., AIAA 2014-0517, 2014.Google Scholar
  3. 3.
    Avramenko, R.F., Bakhtin, B.I., Nikolaeva, V.I., Poskacheeva, L.P., and Shirokov, N.N., Zh. Tekh. Fiz., 1990, vol. 60, no. 12, p. 57.Google Scholar
  4. 4.
    Ershov, A.P., Timofeev, I.B., Chuvashev, S.N., and Shibkov, V.M., in Sharovaya molniya v laboratorii (Ball Lightning in the Laboratory), Avramenko, R.F., Klimov, A.I., and Sinkevich, O.A., Eds., Moscow: Khimiya, 1994, p. 112.Google Scholar
  5. 5.
    Leonov, S.B. and Luk’yanov, G.A., J. Appl. Mech. Tech. Phys., 1994, vol. 35, no. 5, p. 653.ADSCrossRefGoogle Scholar
  6. 6.
    Luk’yanov, G.A., Sverkhzvukovye strui plazmy (Supersonic Plasma Jets), Leningrad: Mashinostroenie, 1985.Google Scholar
  7. 7.
    Min’ko, L.Ya., Poluchenie i issledovanie impul’snykh plazmennykh potokov (Generation and Investigation of Pulsed Plasma Flows), Minsk: Nauka i Tekhnika, 1970.Google Scholar
  8. 8.
    Ogurtsova, N.N., Podmoshenskii, I.V., and Shelemina, V.M., Teplofiz. Vys. Temp., 1968, vol. 6, no. 1, p. 48.Google Scholar
  9. 9.
    Pashchina, A.S. and Klimov, A.I., Khim. Fiz., 2014, vol. 33, no. 2, p. 78.Google Scholar
  10. 10.
    Pashchina, A.S., Efimov, A.V., and Chinnov, V.F., High Temp., 2016, vol. 54, no. 4, p. 488.CrossRefGoogle Scholar
  11. 11.
    Eremin, A.V., High Temp., 2013, vol. 51, no. 5, p. 673.CrossRefGoogle Scholar
  12. 12.
    Eremin, A.V., Prog. Energy Combust. Sci., 2012, vol. 38, no. 1, p. 1.CrossRefGoogle Scholar
  13. 13.
    Smirnov, B.M., Phys.—Usp., 2011, vol. 54, no. 7, p. 691.ADSCrossRefGoogle Scholar
  14. 14.
    Abramovich, G.N., Prikladnaya gazovaya dinamika (Applied Gas Dynamics), Moscow: Nauka, 1991.Google Scholar
  15. 15.
    Belov, S.N., Zh. Prikl. Spektrosk., 1978, vol. 28, no. 4, p. 605.ADSGoogle Scholar
  16. 16.
    Zapryagaev, V.I. and Kiselev, N.P., J. Appl. Mech. Tech. Phys., 2009, vol. 50, no. 3, p. 104.CrossRefGoogle Scholar
  17. 17.
    Gubanov, D.A., Zapryagaev, V.I., and Kiselev, N.P., Vestn. Novosib. Gos. Univ., Ser. Fiz., 2013, vol. 8, no. 1, p. 44.Google Scholar
  18. 18.
    Gubbings, J.C., Ingham, J., and Johnson, D., Flow in a supersonic jet expanding from a convergent nozzle, Tech. rep. no. 1197, Liverpool: HM Stationery Office, 1972.Google Scholar
  19. 19.
    Descoeudres, A., Characterization of Electrical Discharge Machining Plasmas, Lausanne: Ecole Polytechnique Federale de Lausanne, 2006.Google Scholar
  20. 20.
    Vitel, Y., Gavrilova, T.V., D’yachkov, L.G., and Kurilenkov, Y.K., J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 83, nos. 3–4, p. 387.ADSCrossRefGoogle Scholar
  21. 21.
    Lochte-Holtgreven, W., Evaluation of plasma parameters, in Plasma Diagnostics, Lochte-Holtgreven, W., Ed., Amsterdam: North Holland, 1968, p. 135.Google Scholar
  22. 22.
    Lochte-Holtgreven, W., Production and measurement of high temperatures, Rep. Progr. Phys., 1958, vol. 21, p. 312.Google Scholar
  23. 23.
    Inglis, D.R. and Teller, E., Astrophys. J., 1939, vol. 90, p. 439.ADSCrossRefGoogle Scholar
  24. 24.
    Ogurtsova, N.N., Podmoshenskii, I.V., and Shelemina, V.M., Teplofiz. Vys. Temp., 1974, vol. 12, no. 1, p. 5.Google Scholar
  25. 25.
    Larenz, R.-W. and Bartels, H., Naturwissenschaften, 1950, vol. 37, no. 7, p. 164.ADSCrossRefGoogle Scholar
  26. 26.
    Larenz, R.W., Z. Phys., 1951, vol. 129, no. 3, p. 327.ADSCrossRefGoogle Scholar
  27. 27.
    Belyaletdinov, T.Sh., Goryachev, S.V., Efimov, A.V., Isakaev, E.Kh., and Chinnov, V.F., Opt. Spectrosc., 2010, vol. 109, no. 5, p. 662.ADSCrossRefGoogle Scholar
  28. 28.
    Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.Google Scholar
  29. 29.
    Asinovskii, E.I., Kirillin, A.V., and Nizovskii, V.L., Stabilizirovannye elektricheskie dugi i ikh primenenie v teplofizicheskom eksperimente (Stabilized Electric Arcs and Their Application in Heat Physical Experiments), Moscow: Fizmatlit, 2008.Google Scholar
  30. 30.
    Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Dolgoprudnyi: Intellekt, 2009.Google Scholar
  31. 31.
    Dean, A.J., Hanson, R.K., and Bowman, C.T., J. Phys. Chem., 1991, vol. 95, p. 3180.CrossRefGoogle Scholar
  32. 32.
    Biberman, L.M. and Norman, G.E., Phys.—Usp., 1967, vol. 10, no. 1, p. 52.ADSCrossRefGoogle Scholar
  33. 33.
    Petrov, Yu.I., Fizika malykh chastits (Physics of Small Particles), Moscow: Nauka, 1982.Google Scholar
  34. 34.
    Bohren, C. and Huffman, D., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.Google Scholar
  35. 35.
    Smirnov, B.M., Protsessy s uchastiem malykh chastits v vozbuzhdennom ili ionizovannom gaze (Processes Involving Small Particles in an Excited or Ionized Gas), Moscow: Logos, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Pashchina
    • 1
  • A. V. Efimov
    • 1
  • V. F. Chinnov
    • 1
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations