High Temperature

, Volume 55, Issue 5, pp 723–730 | Cite as

Study of thermodynamic properties of carbon nanoparticles by the laser heating method

  • E. V. Gurentsov
  • A. V. Eremin
  • E. Yu. Mikheyeva
Thermophysical Properties of Materials


A new experimental approach to the analysis of thermodynamic properties of amorphous carbon nanoparticles synthesized via hydrocarbon pyrolysis behind shock waves is discussed. The proposed approach is based on the analysis of thermal radiation of nanoparticles heated by a laser pulse. The sublimation temperature of the carbon nanoparticles might be determined by the two-colour pyrometry; their sizes, by laserinduced incandescence; and the volume fraction of the sublimated substance, by the laser extinction method. The sublimation temperature depends on both the particle size and the temperature conditions of their formation. The value of surface energy for amorphous carbon nanoparticles was estimated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eletskii, A.V., Zitserman, V.Yu., and Kobzev, G.A., High Temp., 2015, vol. 53, no. 1, p. 130.CrossRefGoogle Scholar
  2. 2.
    Ferrari, A.C. and Robertson, J., Philos. Trans. R. Soc., A, 2004, vol. 362, p. 477.Google Scholar
  3. 3.
    Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, vol. 6, p. 183.ADSCrossRefGoogle Scholar
  4. 4.
    Eletskii, A.V. and Smirnov, B.M., Phys.—Usp., 1995, vol. 38, no. 9, p. 935.ADSCrossRefGoogle Scholar
  5. 5.
    Ponomarev, A.N. and Shamesa, A.I., Diamond Relat. Mater., 2009, vol. 18, p. 505.ADSCrossRefGoogle Scholar
  6. 6.
    Kudryavtsev, Yu.P., Heimann, R.B., and Evsyukov, S.E., J. Mater. Sci., 1996, vol. 31, p. 5557.ADSCrossRefGoogle Scholar
  7. 7.
    Koylu, U.O., Faeth, G.M., Farias, T.L., and Carvalho, M.G., Combust. Flame, 1995, vol. 100, p. 621.CrossRefGoogle Scholar
  8. 8.
    Ishiguro, T., Takatori, Y., and Akihama, K., Combust. Flame, 1997, vol. 108, p. 231.CrossRefGoogle Scholar
  9. 9.
    Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Kolbanovskii, Yu.A., Smirnov, V.N., and Tereza, A.M., Kinet. Catal., 2015, vol. 56, no. 1, p. 12.CrossRefGoogle Scholar
  10. 10.
    D’Anna, A., in Combustion Generated Fine Carbonaceous Particles, Bockhorn, H., Anna, A., Sarofim, A.F., and Wang, H., Eds., Karlsruhe: KIT Sci., 2009, p. 289.Google Scholar
  11. 11.
    Fan, Z. and Watkinson, A.P., Heat Transfer Eng., 2011, vol. 32, p. 237.ADSCrossRefGoogle Scholar
  12. 12.
    Alfe, M., Apicella, B., Barbella, R., Rouzaud, J.-N., Tregrossi, A., and Ciajolo, A., Proc. Combust. Inst., 2009, vol. 32, p. 697.CrossRefGoogle Scholar
  13. 13.
    Alfe, M., Apicella, B., Rouzaud, J.-N., Tregrossi, A., and Ciajolo, A., Combust. Flame, 2010, vol. 157, p. 1959.CrossRefGoogle Scholar
  14. 14.
    Kholghy, M., Saffaripour, M., Yip, C., and Thomson, M.J., Combust. Flame, 2013, vol. 160, p. 2119.CrossRefGoogle Scholar
  15. 15.
    Van der Wal R.L., Bryg, V.M., and Huang, C.-H., Combust. Flame, 2014, vol. 161, p. 602.CrossRefGoogle Scholar
  16. 16.
    Ivanovskii, V.I., Tekhnicheskiiuglerod. Protsessyiapparaty: uchebnoeposobie (Technical Carbon. Processes and Apparatus: ATextbook), Omsk: Tekhuglerod, 2004.Google Scholar
  17. 17.
    Bladh, H., Johnsson, J., Olofsson, N.-E., Bohlin, A., and Bengtsson, P.-E., Proc. Combust. Inst., 2011, vol. 33, p. 641.CrossRefGoogle Scholar
  18. 18.
    Bejaoui, S., Batut, S., Therssen, E., Lamoureux, N., Desgroux, P., and Liu, F., Appl. Phys. B: Lasers Opt., 2015, vol. 118, p. 449.ADSCrossRefGoogle Scholar
  19. 19.
    Michelsen, H.A., J. Chem. Phys., 2003, vol. 118, p. 7012.ADSCrossRefGoogle Scholar
  20. 20.
    Eremin, A., Prog. Energy Combust. Sci., 2012, vol. 38, p. 1.CrossRefGoogle Scholar
  21. 21.
    Santoro, R.J., Semerjian, H.G., and Dobbins, R.A., Combust. Flame, 1983, vol. 51, p. 203.CrossRefGoogle Scholar
  22. 22.
    Schulz, C., Kock, B.F., Hofmann, M., Michelsen, H., Will, S., Bougie, B., Suntz, R., and Smallwood, G., Appl. Phys. B: Lasers Opt., 2006, vol. 83, p. 333.ADSCrossRefGoogle Scholar
  23. 23.
    Gurentsov, E.V. and Eremin, A.V., High Temp., 2011, vol. 47, no. 5, p. 667.CrossRefGoogle Scholar
  24. 24.
    Starke, R. and Roth, P., Combust. Flame, 2002, vol. 127, p. 2278.CrossRefGoogle Scholar
  25. 25.
    Eremin, A. and Gurentsov, E., Combust. Flame, 2012, vol. 159, p. 3607.CrossRefGoogle Scholar
  26. 26.
    Nanda, K.K., Maisels, A., Kruis, F.E., Fissan, H., and Stappert, S., Phys. Rev. Lett., 2003, vol. 91, 106102.ADSCrossRefGoogle Scholar
  27. 27.
    Xiong, S., Qi, W., Cheng, Y., Huang, B., Wang, M., and Li, Y., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 10652.CrossRefGoogle Scholar
  28. 28.
    De Iuliis, S., Migliorini, F., Cignoli, F., and Zizak, G., Appl. Phys. B: Lasers Opt., 2006, vol. 83, p. 397.ADSCrossRefGoogle Scholar
  29. 29.
    Smallwood, G.J., Snelling, D.R., Liu, F., and Gulder, O.L., J. Heat Transfer, 2001, vol. 123, p. 814.CrossRefGoogle Scholar
  30. 30.
    Leider, H.R., Krikorian, O.H., and Young, D.A., Carbon, 1973, vol. 11, p. 555.CrossRefGoogle Scholar
  31. 31.
    Nanda, K.K., Kruis, F.E., and Fissan, H., Phys. Rev. Lett., 2002, vol. 89, 256103.ADSCrossRefGoogle Scholar
  32. 32.
    Danilenko, V.V., Combust.,Explos.ShockWaves(Engl. Transl.), 2005, vol. 41, no. 4, p. 110.Google Scholar
  33. 33.
    Krishnan, S.S., Lin, K.-C., and Faeth, G.M., J. Heat Transfer, 2001, vol. 123, p. 331.CrossRefGoogle Scholar
  34. 34.
    Chang, H. and Charalampopoulos, T.T., Proc. R. Soc. London, Ser. A, 1990, vol. 430, p. 577.ADSCrossRefGoogle Scholar
  35. 35.
    Chase, M.W., Davies, C.A., Downey, J.R., Frurip, D.J., McDonald, R.A., and Syverud, A.N., J. Phys. Chem. Ref. Data, 1985, vol. 14, p. 1.CrossRefGoogle Scholar
  36. 36.
    Asinovskii, E.I. and Kirillin, A.V., Netraditsionnye metody issledovaniya termodinamicheskikh svoistv veshchestv pri vysokikh temperaturakh (Nonconventional Methods for Studying the Thermodynamic Properties of Substances at High Temperatures), Moscow: Yanus-K, 1997.Google Scholar
  37. 37.
    Schraml, S., Dankers, S., Bader, K., Will, S., and Leipertz, A., Combust. Flame, 2000, vol. 120, p. 439.CrossRefGoogle Scholar
  38. 38.
    Michelsen, H.A., Schrader, P.E., and Goulay, F., Carbon, 2010, vol. 48, p. 2175.CrossRefGoogle Scholar
  39. 39.
    Lehre, T., Jungfleisch, B., Suntz, R., and Bockhorn, H., Appl. Opt., 2003, vol. 42, p. 2021.ADSCrossRefGoogle Scholar
  40. 40.
    Bougie, B., Ganippa, L.C., Dam, N.J., and TerMeulen, J.J., Appl. Phys. B: Lasers Opt., 2006, vol. 83, p. 477.ADSCrossRefGoogle Scholar
  41. 41.
    Wang, T.H., Zhu, Y.F., and Jiang, Q., Mater. Chem. Phys., 2008, vol. 111, p. 293.CrossRefGoogle Scholar
  42. 42.
    Melton, L.A., Appl. Opt., 1984, vol. 23, p. 2201.ADSCrossRefGoogle Scholar
  43. 43.
    Jiang, Q. and Chen, Z.P., Carbon, 2006, vol. 44, p. 79.CrossRefGoogle Scholar
  44. 44.
    Zacharia, R., Ulbricht, H., and Hertel, T., Phys. Rev. B: Condens. Matter Mater. Phys. 2004, vol. 69, 155406.ADSCrossRefGoogle Scholar
  45. 45.
    Abrahamson, J., Carbon, 1973, vol. 11, p. 337.CrossRefGoogle Scholar
  46. 46.
    Winter, N. and Ree, F., J. Comput.-Aided Mater. Des., 1998, vol. 5, p. 279.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Gurentsov
    • 1
  • A. V. Eremin
    • 1
  • E. Yu. Mikheyeva
    • 1
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations