Advertisement

High Temperature

, Volume 55, Issue 5, pp 693–701 | Cite as

Calculation of thermodynamic properties of SF6 including the critical region. Combined thermal equation of state with a small number of parameters

  • P. P. Bezverkhii
  • V. G. Martynets
  • A. B. Kaplun
  • A. B. Meshalkin
Thermophysical Properties of Materials

Abstract

A new unified combined equation of the state of liquid, gas, and fluid with a small number of adjustable constants is considered. Using this equation, tables of sulfur hexafluoride SF6 thermodynamic properties are compiled and proposed as standard reference data. The equation of state has the form of an explicit dependence of p = p(ρ, T) and does the following: transfers the thermal and caloric properties of SF6 in the regular component of the thermodynamic surface with the accuracy of the experiment; includes critical exponents β, α, and γ, taken in agreement with the three-dimensional Ising model; and corresponds to the relations of thermodynamics and the scale theory for properties in the critical region. The adjustable constants are obtained by approximating the p,ρ,T-data of SF6 using a combined equation of state in the ranges of 224 ≤ T ≤ 623 K, 0.1 ≤ p ≤ 30 MPa, and 8 ≤ ρ ≤ 1842 kg/m3. It includes a new regular component for approximating p,ρ,T-data in the liquid and gas regions of states outside the critical region, four of the 13 constants that are determined by the conditions at the critical and triple points, the singular component that is a scale equation (six constants) in explicit form for the critical region, and a new crossover function for combining these equations. The total number of system-dependent constants is 21, including parameters of the critical point. The root-mean-square error in the description of p,ρ,T-data of SF6 by pressure is 1.05% in the entire range of gas and liquid states; the average absolute deviation is 0.51%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altunin, V.V., Tr. Mosk. Energ. Inst., 1974, no. 179, p. 26.Google Scholar
  2. 2.
    Totskii, E.E., Burinskii, V.V., and Nikodimov, S.P., Teplofiz. Vys. Temp., 1981, vol. 19, no. 3, p. 514.Google Scholar
  3. 3.
    Ulybin, S.A., Teplofizicheskie svoistva shestiftoristoi sery (elegaza) (Thermophysical Properties of Sulfur Hexafluoride (SF6 Gas)), Moscow: Informelektro, 1977.Google Scholar
  4. 4.
    Funke, M., Kleinrahm, R., and Wagner, W., J. Chem. Thermodyn., 2002, vol. 34, no. 6, p. 717.CrossRefGoogle Scholar
  5. 5.
    Funke, M., Kleinrahm, R., and Wagner, W., J. Chem. Thermodyn., 2002, vol. 34, no. 6, p. 735.CrossRefGoogle Scholar
  6. 6.
    NIST Standard Reference Database, Linstorm, P.J. and Mallard, W.G., 2005, no. 69. http://webbook.nist.gov.Google Scholar
  7. 7.
    Ivanov, D.Yu., Makarevich, L.A., and Sokolova, O.N., Pis’ma Zh. Eksp. Teor. Fiz., 1974, vol. 20, no. 4, p. 272.Google Scholar
  8. 8.
    Ulybin, S.A. and Zherdev, E.P., Teploenergetika, 1971, vol. 9, p. 76.Google Scholar
  9. 9.
    Ihmels, E.C. and Gmehling, J., Int. J. Thermophys., 2002, vol. 23, no. 3, p. 709.CrossRefGoogle Scholar
  10. 10.
    Ivanov, D.Yu., Doctoral (Phys.–Math.) Dissertation, St. Petersburg: St. Petersburg State Univ., 2001.Google Scholar
  11. 11.
    Guder, C. and Wagner, W.A., J. Phys. Chem. Ref. Data, 2009, vol. 38, p. 33.ADSCrossRefGoogle Scholar
  12. 12.
    Scalabrin, G., Bettio, L., Marchi, P., and Stringari, P., J. Phys. Chem. Ref. Data, 2007, vol. 36, no. 2, p. 617.ADSCrossRefGoogle Scholar
  13. 13.
    Bezverkhii, P.P., Martynets, V.G., and Matizen, E.V., High Temp., 2007, vol. 45, no. 4, p. 456.CrossRefGoogle Scholar
  14. 14.
    Bezverkhii, P.P., Martynets, V.G., and Matizen, E.V., High Temp., 2010, vol. 48, no. 4, p. 482.CrossRefGoogle Scholar
  15. 15.
    Bezverkhii, P.P., Martynets, V.G., and Matizen, E.V., JETP, 2007, vol. 105, no. 1, p. 142.ADSCrossRefGoogle Scholar
  16. 16.
    Bezverkhy, P.P., Martynets, V.G., and Matizen, E.V., J. Mol. Liq., 2009, vol. 147, no. 3, p. 162.CrossRefGoogle Scholar
  17. 17.
    Rykov, A.V., Kudryavtseva, I.V., and Rykov, S.V., Nauch. Zh. ITMO Univ., Ser.: Kholodiln. Tehn. Konditsionir., 2013, no. 2. http://www.refrigeration.ihbt.ifmo.ru/789.pdf.Google Scholar
  18. 18.
    Kiselev, S.B., Fluid Phase Equilib., 2004, vol. 222-223, p. 149.CrossRefGoogle Scholar
  19. 19.
    Lee, Y., Shin, M.S., Yeo, J.K., and Kim, H., J. Chem. Thermodyn., 2007, vol. 39, no. 9, p. 1257.CrossRefGoogle Scholar
  20. 20.
    Kaplun, A.B. and Meshalkin, A.B., High Temp., 2010, vol. 48, no. 5, p. 659.CrossRefGoogle Scholar
  21. 21.
    Bezverkhii, P.P., Martynets, V.G., Matizen, E.V., Kaplun, A.B., and Meshalkin, A.B., Thermophys. Aeromech., 2012, vol. 19, no. 4, p. 679.ADSCrossRefGoogle Scholar
  22. 22.
    Bezverkhii, P.P., Martynets, V.G., and Stankus, S.V., High Temp., 2015, vol. 53, no. 3, p. 338.CrossRefGoogle Scholar
  23. 23.
    Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1976, part1.MATHGoogle Scholar
  24. 24.
    Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Fizmatgiz, 1962.Google Scholar
  25. 25.
    Woolley, H.W., Int. J. Thermophys., 1983, vol. 4, no. 1, p. 51.ADSCrossRefGoogle Scholar
  26. 26.
    Kaplun, A.B. and Meshalkin, A.B., Dokl.–Phys., 2003, vol. 48, no. 9, p. 490.ADSCrossRefGoogle Scholar
  27. 27.
    Kaplun, A.B. and Meshalkin, A.B., Russ. J. Phys. Chem. A, 2013, vol. 87, no. 8, p. 1284.CrossRefGoogle Scholar
  28. 28.
    Kaplun, A.B. and Meshalkin, A.B., J. Chem. Eng. Data, 2010, vol. 55, p. 4285.CrossRefGoogle Scholar
  29. 29.
    Bezverkhii, P.P., Martynets, V.G., and Matizen, E.V., JETP, 2009, vol. 109, no.2, p. 262.ADSCrossRefGoogle Scholar
  30. 30.
    Patashinskii, A.Z. and Pokrovskii, V.L., Fluktuatsionnaya teoriya fazovykh perekhodov (Fluctuation Theory of Phase Transitions), Moscow: Nauka, 1982.Google Scholar
  31. 31.
    Agayan, V.A., Anisimov, M.A., and Sengers, J.V., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2001, vol. 64, 026125.ADSCrossRefGoogle Scholar
  32. 32.
    Ustyuzhanin, E.E., Shishakov, V.V., Abdulagatov, I.M., Rykov, V.A., and Popov, P.V., Vestn. Mosk. Energ. Inst., 2012, no. 3, p. 67.Google Scholar
  33. 33.
    Ustyuzhanin, E.E., Shishakov, V.V., Popov, P.V., Rykov, V.A., and Frenkel’, M.L., Vestn. Mosk. Energ. Inst., 2011, no. 6, p. 167.Google Scholar
  34. 34.
    Ustyuzhanin, E.E., Shishakov, V.V., Abdulagatov, I.M., Popov, P.V., Rykov, V.A., and Frenkel’, M.L., Russ. J. Phys. Chem. B, 2012, vol. 6, no. 8, p. 912.CrossRefGoogle Scholar
  35. 35.
    Haupt, A. and Straub, J., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, p. 1795.CrossRefGoogle Scholar
  36. 36.
    Wagner, W., Kurzeja, N., and Pieperbeck, B., Fluid Phase Equilib., 1992, vol. 79, p. 151.CrossRefGoogle Scholar
  37. 37.
    Jany, P. and Straub, J., Int. J. Thermophys., 1987, vol. 8, p. 165.ADSCrossRefGoogle Scholar
  38. 38.
    Otto, J. and Thomas, W., Z. Physik Chem. N.F., 1960, vol. 23, p. 84.CrossRefGoogle Scholar
  39. 39.
    Watanabe, K., Watanabe, H., and Oguchi, K., in Proc. 7th Symp. on Thermophysical Properties, New York: ASME, 1977, p. 489.Google Scholar
  40. 40.
    Clegg, H.P., Rowlinson, J.S., and Sutton, J.R., Trans. Faraday Soc., 1955, vol. 51, p. 1327.CrossRefGoogle Scholar
  41. 41.
    Kurzeja, N., Tielkes, Th., and Wagner, W., Int. J. Thermophys., 1999, vol. 20, p. 531.CrossRefGoogle Scholar
  42. 42.
    Ivanov, D.Yu., in High Pressure Science and Technology, Vodar, B. and Marteau, Ph, Eds., Oxford: Pergamon, 1980, p. 713.Google Scholar
  43. 43.
    Rabinovich, V.A. and Sheludyak, Yu.E., High Temp., 1996, vol. 34, no. 6, p. 874.Google Scholar
  44. 44.
    Bondarev, V.N., Bezverkhii, P.P., and Kosenko, S.I., Russ. J. Phys. Chem. A, 2013, vol. 87, no. 11, p. 1838.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. P. Bezverkhii
    • 1
  • V. G. Martynets
    • 1
  • A. B. Kaplun
    • 2
  • A. B. Meshalkin
    • 2
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations