Skip to main content

The influence of thermal relaxation and thermal damping on transient processes with cyclic boundary conditions

Abstract

Variants of the differential equation of heat conduction in a solid body, which follow from the Fourier and Cattaneo–Vernotte hypotheses and the Lykov equation, are considered. A boundary value problem describing temperature fields in a body (cylinder) upon cyclic heat transfer with cold and hot media is formulated. An analytical solution to the boundary value problem with a hyperbolic differential equation of heat conduction with allowance for thermal relaxation and temperature damping with cyclic boundary conditions of the third kind is given. The thermal transient processes calculated by the classical heat conductance equation and hyperbolic equation of heat conduction on the axis of the cylinder at different values of factors such as the ratio of the thermal damping time to the thermal relaxation time, the duration of cyclic periods, the Fourier relaxation number, and the Biot number are compared. A conclusion is made that the theory of regenerative air heater should be improved by taking into account thermal relaxation and thermal damping in the nozzle and measurements of the thermal relaxation and thermal damping times of the corresponding materials.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Shashkov, A.G., Bubnov, V.A., and Yanovskii, S.Yu., Volnovye yavleniya teploprovodnosti: sistemno-strukturnyi podkhod (Wave Phenomena of Heat Conduction: A System-Structural Approach), Moscow: Editorial URSS, 2004.

    Google Scholar 

  2. 2.

    Herwig, H. and Beckert, K., Heat Mass Transfer, 2000, vol. 36, p. 387.

    ADS  Article  Google Scholar 

  3. 3.

    Mitra, K., Kumar, S., Vedavarz, A., and Mjallemi, M.K., J. Heat Transfer, 1995, vol. 117, no. 3, p. 568.

    Article  Google Scholar 

  4. 4.

    Maxwell, J.C., Philos. Trans. R. Soc. London, 1967, vol. 157, p. 49.

    Article  Google Scholar 

  5. 5.

    Lykov, A.V., Teploprovodnost’ i diffuziya (Thermal Conductivity and Diffusion), Moscow: Gizlegprom, 1941.

    Google Scholar 

  6. 6.

    Cattaneo, C., Universita di Modena, 1948, vol. 3, p. 83.

    Google Scholar 

  7. 7.

    Cattaneo, C., C. R. Seances Acad. Sci., Vie Acad., 1958, vol. 247, no. 4, p. 431.

    Google Scholar 

  8. 8.

    Vernotte, P., C. R. Seances Acad. Sci., Vie Acad., 1958, vol. 246, no. 22, p. 3154.

    Google Scholar 

  9. 9.

    Kirsanov, Yu.A., Kirsanov, A.Yu., Gil’fanov, K.Kh., and Yudakhin, A.E., Russ. Aeronauts. (Izv. VUZ), 2015, vol. 58, no. 3, p. 251.

    Article  Google Scholar 

  10. 10.

    Liu, K.C. and Chang, P.C., Appl. Math. Modell., 2007, vol. 31, p. 369.

    Article  Google Scholar 

  11. 11.

    Kirsanov, Yu.A., Izv. Ross. Akad. Nauk, Energ., 2009, no. 3, p. 44.

    Google Scholar 

  12. 12.

    Kirsanov, Yu.A., Tsiklicheskie teplovye protsessy i teoriya teploprovodnosti v regenerativnykh vozdukhopodogrevatelyakh (Cyclic Thermal Processes and the Theory of Thermal Conductivity in Regenerative Air Heaters), Moscow: Fizmatlit, 2007.

    Google Scholar 

  13. 13.

    Lykov, A.V., J. Eng. Phys., 1965, vol. 9, no. 3, p. 189.

    Article  Google Scholar 

  14. 14.

    Lykov, A.V., Teplomassoobmen: Spravochnik (Heat and Mass Transfer: Handbook), Moscow: Energiya, 1978, 2nd ed.

    Google Scholar 

  15. 15.

    Tzou, D.Y., J. Heat Transfer, 1995, vol. 117, p. 8.

    Article  Google Scholar 

  16. 16.

    Kudinov, V.A. and Kudinov, I.V., High Temp., 2013, vol. 51, no. 2, p. 268.

    Article  Google Scholar 

  17. 17.

    Kirsanov, Yu.A., Kirsanov, A.Yu., and Yudakhin, A.E., High Temp., 2017, vol. 55, no. 1, p. 114.

    Article  Google Scholar 

  18. 18.

    Kartashov, E.M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical Methods in the Theory of Thermal Conductivity of Solids), Moscow: Vysshaya Shkola, 1985.

    Google Scholar 

  19. 19.

    Kartashov, E.M., Izv. Ross. Akad. Nauk, Energ., 2013, no. 1, p. 94.

    Google Scholar 

  20. 20.

    Kartashov, E.M., J. Eng. Phys. Thermophys., 2014, vol. 87, no. 5, p. 1116.

    Article  Google Scholar 

  21. 21.

    Kartashov, E.M., J. Eng. Phys. Thermophys., 2016, vol. 89, no. 2, p. 346.

    Article  Google Scholar 

  22. 22.

    Kirsanov, Yu.A. and Kirsanov, A.Yu., Izv. Ross. Akad. Nauk, Energ., 2015, no. 1, p. 113.

    Google Scholar 

  23. 23.

    Lykov, A.V., Teoriya teploprovodnosti (Theory of Heat Conduction), Moscow: Vysshaya Shkola, 1967.

    Google Scholar 

  24. 24.

    Yavorskii, B.M. and Detlaf, A.A., Spravochnik po fizike (Handbook of Physics), Moscow: Nauka, 1964.

    Google Scholar 

  25. 25.

    Kamke, E., Differentialgleichungen. Lösungmethoden und Lösungen. I. Gewöhnliche Differentialgleichungen (Differential Equations: Solution Methods and Solutions. I. Ordinary Differential Equations), Leipzig: Academische, 1959.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kirsanov.

Additional information

Original Russian Text © Yu.A. Kirsanov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 4, pp. 549–555.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirsanov, Y.A. The influence of thermal relaxation and thermal damping on transient processes with cyclic boundary conditions. High Temp 55, 535–540 (2017). https://doi.org/10.1134/S0018151X17030130

Download citation