Skip to main content
Log in

Spin states of electrons in quantum dots upon heating. Simulation by the Feynman path integral method. Magnetic properties

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

Temperature dependences of spin states and spin paramagnetic susceptibility in ellipsoidal quantum dots (QDs) containing two or three electrons are numerically simulated using ab initio calculations based on the Feynman path integral method. Limits of the thermal stability of spin states are estimated. Upon cooling, the pairing of spins of an electron pair is most intense in spherical QDs; notably, prolate QDs hinder the pairing more strongly than the oblate ones. When the spherical shape of a QD is distorted, a characteristic peak in the temperature dependence of the electron-pair magnetic susceptibility shifts to lower temperatures. A spin of the system of three electrons may either increase or decrease upon cooling, depending on the QD shape. In the case of three electrons, strong spatial anisotropy of the electron-confining field causes a relative decrease in the energy of states with large spin values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Greve, K., McMahon, P.L., Yu, L., Pelc, J.S., Jones, C., Natarajan, Ch.M., Kim, N.Y., Abe, E., Maier, S., Schneider, Ch., Kamp, M., Hoefling, S., Hadfield, R.H., Forchel, A., Fejer, M., and Yamamoto, Y., Nat. Commun., 2013, vol. 4, p. 2228.

    Google Scholar 

  2. De Greve, K., Press, D., McMahon, P.L., and Yamamoto, Y., Rep. Prog. Phys., 2013, vol. 76, no. 9, 092501.

    Article  ADS  Google Scholar 

  3. De Greve, K., Yu, L., McMahon, P.L., Pelc, J.S., Natarajan, Ch.M., Kim, N.Y., Abe, E., Maier, S., Schneider, Ch., Kamp, M., Hoefling, S., Hadfield, R.H., Forchel, A., Fejer, M., and Yamamoto, Y., Nature, 2012, vol. 491, p. 421.

    Article  ADS  Google Scholar 

  4. Folleti, S., Bluhm, H., Mahalu, D., Umansky, V., and Yacoby, A., Nat. Phys., 2009, vol. 5, no. 12, p. 903.

    Article  Google Scholar 

  5. Bluhm, H., Foletti, S., Neder, I., Rudner, M., Mahalu, D., Umansky, V., and Yacoby, A., Nat. Phys., 2011, vol. 7, no. 2, p. 109.

    Article  Google Scholar 

  6. Shulman, M.D., Dial, O.E., Harvey, S.P., Bluhm, H., Umansky, V., and Yacoby, A., Science, 2012, vol. 336, no. 6078, p. 202.

    Article  ADS  Google Scholar 

  7. Dial, O.E., Shulman, M.D., Harvey, S.P., Bluhm, H., Umansky, V., and Yacoby, A., Phys. Rev. Lett., 2013, vol. 110, no. 14, 146804.

    Google Scholar 

  8. Kim, D., Shi, Zh., Simmons, C.B., Ward, D.R., Prance, J.R., Koh, T.S., Gamble, J.K., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., and Eriksson, M.A., Nature, 2014, vol. 511, p. 70.

    Article  ADS  Google Scholar 

  9. Greilich, A., Badescu, S.C., Kim, D., Bracker, A.C., and Gammon, D., Phys. Rev. Lett., 2013, vol. 110, no. 11, 117402.

    Google Scholar 

  10. Koh, T.S., Coppersmith, S.N., and Friesen, M., Proc. Nat. Acad. Sci. U. S. A., 2013, vol. 110, no. 49, p. 19695.

    Article  ADS  Google Scholar 

  11. Shulman, M.D., Dial, O.E., Harvey, S.P., Bluhm, H., Umansky, V., and Yacoby, A., Science, 2012, vol. 336, no. 6078, p. 202.

    Article  ADS  Google Scholar 

  12. Klauser, D., Coish, W.A., and Loss, D., Adv. Solid State Phys., 2008, vol. 46, p. 17.

    Article  Google Scholar 

  13. Greilich, A., Carter, S.G., Kim, D., Bracker, A.S., and Gammon, D., Nat. Photonics, 2011, vol. 5, no. 11, p. 703.

    Article  ADS  Google Scholar 

  14. Kim, D., Economou, S.E., Badescu, S.C., Scheibner, M., Bracker, A.S., Bashkansky, M., Reinecke, T.L., and Gammon, D., Phys. Rev. Lett., 2008, vol. 101, 236804.

  15. Mazurek, P., Roszak, K., and Horodecki, P., Europhys. Lett., 2011, vol. 107, no. 6.

    Google Scholar 

  16. Feynman, R.P. and Hibbs, A.R., Quantum Mechanics and Path Integrals, New York McGraw-Hill, 1965.

    MATH  Google Scholar 

  17. Orekhov, N.D. and Stegailov, V.V., High Temp., 2014, vol. 52, no. 2, p. 198.

    Article  Google Scholar 

  18. Galashev, A.E. and Rakhmanova, O.R., High Temp., 2014, vol. 52, no. 3, p. 374.

    Article  Google Scholar 

  19. Galashev, A.E. and Rakhmanova, O.R., High Temp., 2013, vol. 51, no. 1, p. 97.

    Article  Google Scholar 

  20. Shevkunov, S.V., High Temp., 2013, vol. 51, no. 1, p. 79.

    Article  Google Scholar 

  21. Galashev, A.E. and Rakhmanova, O.R., High Temp., 2013, vol. 51, no. 3, p. 369.

    Article  Google Scholar 

  22. Lozovik, Yu.E. and Volkov, S.Yu., Phys. Solid State, 2003, vol. 45, no. 2, p. 364.

    Article  ADS  Google Scholar 

  23. Shevkunov, S.V., JETP, 2013, vol. 117, no. 4, p. 699.

    Article  ADS  Google Scholar 

  24. Shevkunov, S.V., Dokl. Phys., 2013, vol. 58, no. 7, p. 282.

    Article  ADS  Google Scholar 

  25. Shevkunov, S.V., JETP, 2000, vol. 91, no. 1, p. 31.

    Article  ADS  Google Scholar 

  26. Shevkunov, S.V., JETP, 2002, vol. 94, no. 5, p. 943.

    Article  ADS  Google Scholar 

  27. Shevkunov, S.V., Dokl. Phys., 2002, vol. 47, no. 2, p. 109.

    Article  ADS  Google Scholar 

  28. Shevkunov, S.V., Comput. Math. Math. Phys., 2003, vol. 43, no. 12, p. 1756.

    MathSciNet  Google Scholar 

  29. Landau, L.D. and Lifshits, E.M., Kvantovaya mekhanika. Nerelyativistskaya teoriya (Quantum Mechanics. Nonrelativistic Theory), Moscow Fizmatlit, 2004.

    Google Scholar 

  30. Zamalin, V.M., Norman, G.E., and Filinov, V.S., Metod Monte-Karlo v statisticheskoi termodinamike (The Monte-Carlo Method in Statistical Thermodynamics), Moscow Nauka, 1977.

    Google Scholar 

  31. Shevkunov, S.V., JETP, 2005, vol. 100, no. 3, p. 617.

    Article  ADS  Google Scholar 

  32. Shevkunov, S.V., JETP, 2007, vol. 105, no. 2, p. 404.

    Article  ADS  Google Scholar 

  33. Weyl, H., The Theory of Groups and Quantum Mechanics, New York Dover, 1950.

    MATH  Google Scholar 

  34. Belov, K.P., Magnitoteplovye yavleniya v redkozemel’nykh magnetikakh (Magnetocaloric Effects in Rare-Earth Magnets), Moscow Nauka, 1990.

    Google Scholar 

  35. Mendelssohn, K., The Quest for Absolute Zero: the Meaning of Low Temperature Physics, London World University Library, 1966.

    Google Scholar 

  36. Hill, T.L., Statistical Mechanics: Principles and Selected Applications, New York McGraw-Hill, 1956.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 1, pp. 15–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. Spin states of electrons in quantum dots upon heating. Simulation by the Feynman path integral method. Magnetic properties. High Temp 55, 12–19 (2017). https://doi.org/10.1134/S0018151X17010217

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17010217

Navigation