Skip to main content
Log in

Dust reactor for limestone calcination

  • High Temperature Apparatuses and Structures
  • Published:
High Temperature Aims and scope

Abstract

Experimental modeling of calcination of dusty carbonate particles is performed in an isothermal flow of combustion products in a reactor holding the necessary temperature due to the intermediate introduction of inflammable gas into afterburning. The decomposition kinetics of carbonate particles in combustion products is analyzed applying the available publications in order to predict the efficiency of such reactors for practical use and to determine optimal process modes. Special attention is paid in this study to comparison of theoretical and experimental data in boundary calcination regimes, i.e., at parameters, below which calcination in combustion products is already impossible. Taking into account that one important purpose of rapid dust calcination is the preparation of active lime, which effectively binds “acidic” gases in combustion products of power installations, control over the removal of SO x from gases by dust in a reactor was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oates, J.A.H., Lime and Limestone: Chemistry and Technology, Production, and Uses, Weinheim, Germany: Wiley, 1998.

    Book  Google Scholar 

  2. L’vov, B.V., Termorazlozhenie tverdykh i zhidkikh veshchestv (Thermal Decomposition of Solids and Liquids), St. Petersburg: St. Petersburg Polytechnic University, 2006.

    Google Scholar 

  3. Gallagher, P.K. and Johnson, D.W., Thermochim. Acta, 1973, vol. 6, p. 67.

    Article  Google Scholar 

  4. Caldwell, K.M., Gallagher, P.K., and Johnson, D.W., Thermochim. Acta, 1977, vol. 18, p. 15.

    Article  Google Scholar 

  5. Beruto, D. and Searcy, A.W., J. Chem. Soc., Faraday Trans., 1974, vol. 70, p. 2145.

    Article  Google Scholar 

  6. Coutant, R.W., Barrett, R.E., and Lougher, E.H., EPA Rep., 1971, no. 204–385.

    Google Scholar 

  7. Mohr, M., PhD Thesis, Bochum, Germany: University of Ruhr, 2001.

  8. Borgwardt, R.H., AlChE J., 1985, vol. 31, no. 1, p. 103.

    Article  Google Scholar 

  9. Silcox, G.D., Kramlich, J.C., and Pershing, D.W., Ind. Eng. Chem. Res., 1989, vol. 28, p. 155.

    Article  Google Scholar 

  10. Darroudi, T. and Searcy, A.W., J. Phys. Chem., 1981, vol. 85, p. 3971.

    Article  Google Scholar 

  11. Hu, N. and Scaroni, A.W., Fuel, 1996, vol. 75, p. 177.

    Article  Google Scholar 

  12. Fidaros, D.K., Baxevanou, C.A., Dritselis, C.D., and Vlachos, N.S., Powder Technol., 2007, vol. 171, p. 81.

    Article  Google Scholar 

  13. Mikulcic, H., Chem. Eng. Sci., 2012, vol. 69, p. 607.

    Article  Google Scholar 

  14. Bessmertnykh, A.V., Busarova, I.N., Kovbasyuk, V.I., Maksimenko, S.Yu., Medvedev, Yu.V., and Miroshnichenko, V.I., RF Patent 84509U1 (2009). www.1.fips.ru/wps/portal/Registers/).

  15. Batenin, V.M., Varaksin, A.Yu., Kovbasyuk, V.I., Kretova, L.G., Medvedev, Yu.V., Medin, S.A., and Miroshnichenko, V.I., RF Patent RU90546U1 (2009). hppt://www1.fips.ru/wps/portal/Registers/.

  16. Varaksin, A.Yu., Stolknoveniya v potokakh gaza s tverdymi chastitsami (Collisions in Flows of Gases with Solid Particles), Moscow: Fizmatlit, 2008.

    Google Scholar 

  17. Varaksin, A.Yu., Protasov, M.V., and Teplitskii, Yu.S., High Temp., 2014, vol. 52, no. 4, p. 554.

    Article  Google Scholar 

  18. Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.

    Article  Google Scholar 

  19. Sugiyono, I., Thesis for the Degree of Master of Science, Champaign, Illinois, United States: University of Illinois at Urbana, 2012.

    Google Scholar 

  20. Stanmore, B.R. and Gilot, P., Fuel Process. Technol., 2005, vol. 86, p. 1707.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Batenin.

Additional information

Original Russian Text © V.M. Batenin, V.I. Kovbasyuk, L.G. Kretova, Yu.V. Medvedev, 2015, published in Teplofizika Vysokikh Temperatur, 2015, Vol. 53, No. 2, pp. 301–311.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batenin, V.M., Kovbasyuk, V.I., Kretova, L.G. et al. Dust reactor for limestone calcination. High Temp 53, 289–298 (2015). https://doi.org/10.1134/S0018151X15020042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15020042

Keywords

Navigation