Molecular dynamics simulation of graphite melting

Abstract

Questions on the behavior of the graphite melting curve have remained open during the last fifty years. The process of graphite melting in the pressure range of 2–14 GPa is investigated by the method of molecular dynamics using the model of reactive interatomic potential; the dynamics of melting-front propagation upon crystal superheating is considered, and the melting curve is plotted. The self-diffusion coefficient in the liquid phase is determined for the aforementioned pressure range, and the question of the existence of the liquid-liquid phase transition in carbon is considered.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Brazhkin, V.V. and Lyapin, A.G., J. Superhard Mater., 2013, vol. 34, no. 6, p. 400.

    Article  Google Scholar 

  2. 2.

    Aust, R. and Drickamer, H., Science (Washington), 1963, vol. 140, p. 817.

    Article  ADS  Google Scholar 

  3. 3.

    Boulfelfel, S.E., Oganov, A.R., and Leoni, S., Sci. Rep., 2012, vol. 2, no. 1, p. 471.

    ADS  Google Scholar 

  4. 4.

    Wang, J.-T., Chen, C., and Kawazoe, Y., Phys. Rev. B, 2012, vol. 85, no. 21, p. 214104.

    Article  ADS  Google Scholar 

  5. 5.

    Shenderova, O.A., Zhirnov, V.V., and Brenner, D.W., Crit. Rev. Solid State Mater. Sci., 2002, vol. 27, p. 227.

    Article  ADS  Google Scholar 

  6. 6.

    Basharin, A.Yu., Lysenko, I.Yu., and Turchaninov, M.A., High Temp., 2012, vol. 50, no. 4, p. 464.

    Article  Google Scholar 

  7. 7.

    Stankus, S.V., Savchenko, I.V., Agazhanov, A.Sh., Yatsuk, O.S., and Zhmurikov, E.I., High Temp., 2013, vol. 51, no. 2, p. 179.

    Article  Google Scholar 

  8. 8.

    Kanel’, G.I., Bezruchko, G.S., Savinykh, A.S., Razorenov, S.V., Milyavskii, V.V., and Khishchenko, K.V., High Temp., 2010, vol. 48, no. 6, p. 806.

    Article  Google Scholar 

  9. 9.

    Whittaker, A.G., Nature (London), 1978, vol. 276, p. 695.

    Article  ADS  Google Scholar 

  10. 10.

    Ronchi, C., Beukers, R., Heinz, H., Hiernaut, J.P., and Selfslag, R., Int. J. Thermophys., 1992, vol. 13, no. 1, p. 107.

    Article  ADS  Google Scholar 

  11. 11.

    Kirillin, A.V., Kovalenko, M.D., Sheindlin, M.A., and Zhivopistsev, B.C., Teplofiz. Vys. Temp., 1985, vol. 23, no. 4, p. 699.

    Google Scholar 

  12. 12.

    Asinovskii, E.I., Kirillin, A.V., and Kostanovskii, A.V., Phys.-Usp., 2002, vol. 45, no. 8, p. 869.

    Article  ADS  Google Scholar 

  13. 13.

    Savvatimskii, A.I., Phys.-Usp., 2003, vol. 46, no. 12, p. 1295.

    Article  ADS  Google Scholar 

  14. 14.

    Basharin, A.Yu., Brykin, M.V., Marin, M.Yu., Pakhomov, I.S., and Sitnikov, S.F., High Temp., 2004, vol. 42, no. 1, p. 56.

    Article  Google Scholar 

  15. 15.

    Bundy, F.P., J. Chem. Phys., 1963, vol. 38, no. 3, p. 618.

    Article  ADS  Google Scholar 

  16. 16.

    Bundy, F.P., Bassett, W.A., Weathers, M.S., Hemley, R.J., Mao, H.U., and Goncharov, A.F., Carbon, 1996, vol. 34, no. 2, p. 141.

    Article  Google Scholar 

  17. 17.

    Savvatimskiy, A.I., Carbon, 2005, vol. 43, no. 6, p. 1115.

    Article  Google Scholar 

  18. 18.

    Tersoff, J., Phys. Rev. Lett., 1988, vol. 61, no. 25, p. 2879.

    Article  ADS  Google Scholar 

  19. 19.

    Pettifor, D., Phys. Rev. Lett., 1989, vol. 63, p. 2480.

    Article  ADS  Google Scholar 

  20. 20.

    Aoki, M., Nguyenmanh, D., Pettifor, D., and Vitek, V., Prog. Mater. Sci., 2007, vol. 52, nos. 2–3, p. 154.

    Article  Google Scholar 

  21. 21.

    Brenner, D., Phys. Rev. B, 1990, vol. 42, no. 15, p. 9458.

    Article  ADS  Google Scholar 

  22. 22.

    Stuart, S.J., Tutein, A.B., and Harrison, J.A., J. Chem. Phys., 2000, vol. 112, no. 14, p. 6472.

    Article  ADS  Google Scholar 

  23. 23.

    Hur, J. and Stuart, S.J., J. Chem. Phys., 2012, vol. 137, no. 5, p. 054102.

    Article  ADS  Google Scholar 

  24. 24.

    Prodanov, N.V. and Khomenko, A.V., Surf. Sci., 2010, vol. 604, nos. 7–8, p. 730.

    Article  ADS  Google Scholar 

  25. 25.

    Los, J. and Fasolino, A., Phys. Rev. B, 2003, vol. 68, no. 2, p. 024107.

    Article  ADS  Google Scholar 

  26. 26.

    Ghiringhelli, L.M., PhD Thesis, Amsterdam: University of Amsterdam, 2006.

  27. 27.

    Los, J., Ghiringhelli, L., Meijer, E., and Fasolino, A., Phys. Rev. B, 2005, vol. 72, no. 21, p. 214102.

    Article  ADS  Google Scholar 

  28. 28.

    Mundy, C.J., Curioni, A., Goldman, N., Will Kuo I.-F., Reed, E.J., Fried, I.E., and Ianuzzi, M. J. Chem. Phys., 2008, vol. 128, no. 18, p. 184701.

    Article  ADS  Google Scholar 

  29. 29.

    Khaliullin, R.Z., Eshet, H., Kühne, T.D., Behler, J., and Parrinello, M., Nat. Mater., 2011, vol. 10, no. 9, p. 693.

    Article  ADS  Google Scholar 

  30. 30.

    Vega, C., Sanz, E., Abascal, J.L.F., and Noya, E.G., J. Phys.: Condens. Matter, 2008, vol. 20, no. 15, p. 153101.

    ADS  Google Scholar 

  31. 31.

    Morris, J., Wang, C., Ho, K., and Chan, C., Phys. Rev. B, 1994, vol. 49, no. 5, p. 3109.

    Article  ADS  Google Scholar 

  32. 32.

    Kuksin, A.Y., Norman, G.E., Stegailov, V.V., and Yanilkin, A.V., Comput. Phys. Commun., 2007, vol. 177, nos. 1–2, p. 34.

    Article  ADS  Google Scholar 

  33. 33.

    Starikov, S.V. and Stegailov, V.V., Phys. Rev. B, 2009, vol. 80, no. 22, p. 220104.

    Article  ADS  Google Scholar 

  34. 34.

    Smirnov, G.S. and Stegailov, V.V., J. Chem. Phys., 2012, vol. 136, no. 4, p. 044523.

    Article  ADS  Google Scholar 

  35. 35.

    Dozhdikov, V.S., Basharin, A.Y., and Levashov, P.R., J. Chem. Phys., 2012, vol. 137, no. 5, p. 054502.

    Article  ADS  Google Scholar 

  36. 36.

    Sun, D., Asta, M., and Hoyt, J., Phys. Rev. B, 2004, vol. 69, no. 2, p. 024108.

    Article  ADS  Google Scholar 

  37. 37.

    Ashkenazy, Y. and Averback, R.S., Acta Mater., 2010, vol. 58, no. 2, p. 524.

    Article  Google Scholar 

  38. 38.

    Maltsev, I., Mirzoev, A., Danilov, D., and Nestler, B., Modell. Simul. Mater. Sci. Eng., 2009, vol. 17, no. 5, p. 055006.

    Article  ADS  Google Scholar 

  39. 39.

    Monk, J., Yang, Y., Mendelev, M.I., Asta, M., Hoyt, J.J., and Sun, D.Y., Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, no. 1, p. 015004.

    Article  ADS  Google Scholar 

  40. 40.

    Buta, D., Asta, M., and Hoyt, J.J., J. Chem. Phys., 2007, vol. 127, no. 7, p. 074703.

    Article  ADS  Google Scholar 

  41. 41.

    Siavosh-Haghighi, A., Sewell, T.D., and Thompson, D.L., J. Chem. Phys., 2010, vol. 133, no. 19, p. 194501.

    Article  ADS  Google Scholar 

  42. 42.

    Tartaglino, U., Zykova-Timan, T., Ercolessi, F., and Tosatti, E., Phys. Rep., 2005, vol. 411, p. 291.

    Article  ADS  Google Scholar 

  43. 43.

    Zhang, K., Stocks, G.M., and Zhong, J., Nanotecnology, 2007, vol. 18, no. 28, p. 285703.

    Article  ADS  Google Scholar 

  44. 44.

    Norman, G.E. and Stegailov, V.V., Dokl. Phys., 2002, vol. 47, no. 9, p. 667.

    Article  ADS  Google Scholar 

  45. 45.

    Stegailov, V.V., Comput. Phys. Commun., 2005, vol. 169, nos. 1–3, p. 247.

    Article  ADS  Google Scholar 

  46. 46.

    Zakharchenko, K.V., Fasolino, A., Los, J.H., and Katsnelson, M.I., J. Phys.: Condens. Matter, 2011, vol. 23, no. 20, p. 202202.

    ADS  Google Scholar 

  47. 47.

    Ghiringhelli, L., Los, J., Meijer, E., Fasolino, A., and Frenkel, D. Phys. Rev. Lett., 2005, vol. 94, no. 14, p. 145701.

    Article  ADS  Google Scholar 

  48. 48.

    Colonna, F., Los, J., Fasolino, A., and Meijer, E., Phys. Rev. B, 2009, vol. 80, no. 13, p. 134103.

    Article  ADS  Google Scholar 

  49. 49.

    Fateeva, N.S. and Vereshchagin, L.F., JETP Lett., 1971, vol. 13, no. 3, p. 110.

    ADS  Google Scholar 

  50. 50.

    Togaya, M., Phys. Rev. Lett., 1997, vol. 79, no. 13, p. 2474.

    Article  ADS  Google Scholar 

  51. 51.

    Rapoport, E., J. Chem. Phys., 1967, vol. 46, no. 8, p. 2891.

    Article  ADS  Google Scholar 

  52. 52.

    Wu, C., Glosli, J., Galli, G., and Ree, F., Phys. Rev. Lett., 2002, vol. 89, no. 13, p. 135701.

    Article  ADS  Google Scholar 

  53. 53.

    Ghiringhelli, L.M. Valeriani, C., Los, J.H., Meijer, E.J., Fasolino, A., and Frenkel, D. Mol. Phys., 2008, vol. 106, nos. 16–18, p. 2011.

    Article  ADS  Google Scholar 

  54. 54.

    Kum, O., Ree, F.H., Stuart, S.J., and Wu, C.J., J. Chem. Phys., 2003, vol. 119, no. 12, p. 6053.

    Article  ADS  Google Scholar 

  55. 55.

    Fortov, V.E., Korobenko, V.N., and Savvatimskiy, A.I., EPJ Web Conf., 2011, vol. 15, p. 02001.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. D. Orekhov.

Additional information

Original Russian Text © N.D. Orekhov, V.V. Stegailov, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 2, pp. 220–228.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orekhov, N.D., Stegailov, V.V. Molecular dynamics simulation of graphite melting. High Temp 52, 198–204 (2014). https://doi.org/10.1134/S0018151X14020187

Download citation

Keywords

  • Front Velocity
  • Highly Orient Pyrolytic Graphite
  • Liquid Carbon
  • Temper Ature Range
  • Bond Order Potential