Advertisement

High Temperature

, Volume 52, Issue 2, pp 198–204 | Cite as

Molecular dynamics simulation of graphite melting

  • N. D. OrekhovEmail author
  • V. V. Stegailov
Thermophysical Properties of Materials

Abstract

Questions on the behavior of the graphite melting curve have remained open during the last fifty years. The process of graphite melting in the pressure range of 2–14 GPa is investigated by the method of molecular dynamics using the model of reactive interatomic potential; the dynamics of melting-front propagation upon crystal superheating is considered, and the melting curve is plotted. The self-diffusion coefficient in the liquid phase is determined for the aforementioned pressure range, and the question of the existence of the liquid-liquid phase transition in carbon is considered.

Keywords

Front Velocity Highly Orient Pyrolytic Graphite Liquid Carbon Temper Ature Range Bond Order Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brazhkin, V.V. and Lyapin, A.G., J. Superhard Mater., 2013, vol. 34, no. 6, p. 400.CrossRefGoogle Scholar
  2. 2.
    Aust, R. and Drickamer, H., Science (Washington), 1963, vol. 140, p. 817.CrossRefADSGoogle Scholar
  3. 3.
    Boulfelfel, S.E., Oganov, A.R., and Leoni, S., Sci. Rep., 2012, vol. 2, no. 1, p. 471.ADSGoogle Scholar
  4. 4.
    Wang, J.-T., Chen, C., and Kawazoe, Y., Phys. Rev. B, 2012, vol. 85, no. 21, p. 214104.CrossRefADSGoogle Scholar
  5. 5.
    Shenderova, O.A., Zhirnov, V.V., and Brenner, D.W., Crit. Rev. Solid State Mater. Sci., 2002, vol. 27, p. 227.CrossRefADSGoogle Scholar
  6. 6.
    Basharin, A.Yu., Lysenko, I.Yu., and Turchaninov, M.A., High Temp., 2012, vol. 50, no. 4, p. 464.CrossRefGoogle Scholar
  7. 7.
    Stankus, S.V., Savchenko, I.V., Agazhanov, A.Sh., Yatsuk, O.S., and Zhmurikov, E.I., High Temp., 2013, vol. 51, no. 2, p. 179.CrossRefGoogle Scholar
  8. 8.
    Kanel’, G.I., Bezruchko, G.S., Savinykh, A.S., Razorenov, S.V., Milyavskii, V.V., and Khishchenko, K.V., High Temp., 2010, vol. 48, no. 6, p. 806.CrossRefGoogle Scholar
  9. 9.
    Whittaker, A.G., Nature (London), 1978, vol. 276, p. 695.CrossRefADSGoogle Scholar
  10. 10.
    Ronchi, C., Beukers, R., Heinz, H., Hiernaut, J.P., and Selfslag, R., Int. J. Thermophys., 1992, vol. 13, no. 1, p. 107.CrossRefADSGoogle Scholar
  11. 11.
    Kirillin, A.V., Kovalenko, M.D., Sheindlin, M.A., and Zhivopistsev, B.C., Teplofiz. Vys. Temp., 1985, vol. 23, no. 4, p. 699.Google Scholar
  12. 12.
    Asinovskii, E.I., Kirillin, A.V., and Kostanovskii, A.V., Phys.-Usp., 2002, vol. 45, no. 8, p. 869.CrossRefADSGoogle Scholar
  13. 13.
    Savvatimskii, A.I., Phys.-Usp., 2003, vol. 46, no. 12, p. 1295.CrossRefADSGoogle Scholar
  14. 14.
    Basharin, A.Yu., Brykin, M.V., Marin, M.Yu., Pakhomov, I.S., and Sitnikov, S.F., High Temp., 2004, vol. 42, no. 1, p. 56.CrossRefGoogle Scholar
  15. 15.
    Bundy, F.P., J. Chem. Phys., 1963, vol. 38, no. 3, p. 618.CrossRefADSGoogle Scholar
  16. 16.
    Bundy, F.P., Bassett, W.A., Weathers, M.S., Hemley, R.J., Mao, H.U., and Goncharov, A.F., Carbon, 1996, vol. 34, no. 2, p. 141.CrossRefGoogle Scholar
  17. 17.
    Savvatimskiy, A.I., Carbon, 2005, vol. 43, no. 6, p. 1115.CrossRefGoogle Scholar
  18. 18.
    Tersoff, J., Phys. Rev. Lett., 1988, vol. 61, no. 25, p. 2879.CrossRefADSGoogle Scholar
  19. 19.
    Pettifor, D., Phys. Rev. Lett., 1989, vol. 63, p. 2480.CrossRefADSGoogle Scholar
  20. 20.
    Aoki, M., Nguyenmanh, D., Pettifor, D., and Vitek, V., Prog. Mater. Sci., 2007, vol. 52, nos. 2–3, p. 154.CrossRefGoogle Scholar
  21. 21.
    Brenner, D., Phys. Rev. B, 1990, vol. 42, no. 15, p. 9458.CrossRefADSGoogle Scholar
  22. 22.
    Stuart, S.J., Tutein, A.B., and Harrison, J.A., J. Chem. Phys., 2000, vol. 112, no. 14, p. 6472.CrossRefADSGoogle Scholar
  23. 23.
    Hur, J. and Stuart, S.J., J. Chem. Phys., 2012, vol. 137, no. 5, p. 054102.CrossRefADSGoogle Scholar
  24. 24.
    Prodanov, N.V. and Khomenko, A.V., Surf. Sci., 2010, vol. 604, nos. 7–8, p. 730.CrossRefADSGoogle Scholar
  25. 25.
    Los, J. and Fasolino, A., Phys. Rev. B, 2003, vol. 68, no. 2, p. 024107.CrossRefADSGoogle Scholar
  26. 26.
    Ghiringhelli, L.M., PhD Thesis, Amsterdam: University of Amsterdam, 2006.Google Scholar
  27. 27.
    Los, J., Ghiringhelli, L., Meijer, E., and Fasolino, A., Phys. Rev. B, 2005, vol. 72, no. 21, p. 214102.CrossRefADSGoogle Scholar
  28. 28.
    Mundy, C.J., Curioni, A., Goldman, N., Will Kuo I.-F., Reed, E.J., Fried, I.E., and Ianuzzi, M. J. Chem. Phys., 2008, vol. 128, no. 18, p. 184701.CrossRefADSGoogle Scholar
  29. 29.
    Khaliullin, R.Z., Eshet, H., Kühne, T.D., Behler, J., and Parrinello, M., Nat. Mater., 2011, vol. 10, no. 9, p. 693.CrossRefADSGoogle Scholar
  30. 30.
    Vega, C., Sanz, E., Abascal, J.L.F., and Noya, E.G., J. Phys.: Condens. Matter, 2008, vol. 20, no. 15, p. 153101.ADSGoogle Scholar
  31. 31.
    Morris, J., Wang, C., Ho, K., and Chan, C., Phys. Rev. B, 1994, vol. 49, no. 5, p. 3109.CrossRefADSGoogle Scholar
  32. 32.
    Kuksin, A.Y., Norman, G.E., Stegailov, V.V., and Yanilkin, A.V., Comput. Phys. Commun., 2007, vol. 177, nos. 1–2, p. 34.CrossRefADSGoogle Scholar
  33. 33.
    Starikov, S.V. and Stegailov, V.V., Phys. Rev. B, 2009, vol. 80, no. 22, p. 220104.CrossRefADSGoogle Scholar
  34. 34.
    Smirnov, G.S. and Stegailov, V.V., J. Chem. Phys., 2012, vol. 136, no. 4, p. 044523.CrossRefADSGoogle Scholar
  35. 35.
    Dozhdikov, V.S., Basharin, A.Y., and Levashov, P.R., J. Chem. Phys., 2012, vol. 137, no. 5, p. 054502.CrossRefADSGoogle Scholar
  36. 36.
    Sun, D., Asta, M., and Hoyt, J., Phys. Rev. B, 2004, vol. 69, no. 2, p. 024108.CrossRefADSGoogle Scholar
  37. 37.
    Ashkenazy, Y. and Averback, R.S., Acta Mater., 2010, vol. 58, no. 2, p. 524.CrossRefGoogle Scholar
  38. 38.
    Maltsev, I., Mirzoev, A., Danilov, D., and Nestler, B., Modell. Simul. Mater. Sci. Eng., 2009, vol. 17, no. 5, p. 055006.CrossRefADSGoogle Scholar
  39. 39.
    Monk, J., Yang, Y., Mendelev, M.I., Asta, M., Hoyt, J.J., and Sun, D.Y., Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, no. 1, p. 015004.CrossRefADSGoogle Scholar
  40. 40.
    Buta, D., Asta, M., and Hoyt, J.J., J. Chem. Phys., 2007, vol. 127, no. 7, p. 074703.CrossRefADSGoogle Scholar
  41. 41.
    Siavosh-Haghighi, A., Sewell, T.D., and Thompson, D.L., J. Chem. Phys., 2010, vol. 133, no. 19, p. 194501.CrossRefADSGoogle Scholar
  42. 42.
    Tartaglino, U., Zykova-Timan, T., Ercolessi, F., and Tosatti, E., Phys. Rep., 2005, vol. 411, p. 291.CrossRefADSGoogle Scholar
  43. 43.
    Zhang, K., Stocks, G.M., and Zhong, J., Nanotecnology, 2007, vol. 18, no. 28, p. 285703.CrossRefADSGoogle Scholar
  44. 44.
    Norman, G.E. and Stegailov, V.V., Dokl. Phys., 2002, vol. 47, no. 9, p. 667.CrossRefADSGoogle Scholar
  45. 45.
    Stegailov, V.V., Comput. Phys. Commun., 2005, vol. 169, nos. 1–3, p. 247.CrossRefADSGoogle Scholar
  46. 46.
    Zakharchenko, K.V., Fasolino, A., Los, J.H., and Katsnelson, M.I., J. Phys.: Condens. Matter, 2011, vol. 23, no. 20, p. 202202.ADSGoogle Scholar
  47. 47.
    Ghiringhelli, L., Los, J., Meijer, E., Fasolino, A., and Frenkel, D. Phys. Rev. Lett., 2005, vol. 94, no. 14, p. 145701.CrossRefADSGoogle Scholar
  48. 48.
    Colonna, F., Los, J., Fasolino, A., and Meijer, E., Phys. Rev. B, 2009, vol. 80, no. 13, p. 134103.CrossRefADSGoogle Scholar
  49. 49.
    Fateeva, N.S. and Vereshchagin, L.F., JETP Lett., 1971, vol. 13, no. 3, p. 110.ADSGoogle Scholar
  50. 50.
    Togaya, M., Phys. Rev. Lett., 1997, vol. 79, no. 13, p. 2474.CrossRefADSGoogle Scholar
  51. 51.
    Rapoport, E., J. Chem. Phys., 1967, vol. 46, no. 8, p. 2891.CrossRefADSGoogle Scholar
  52. 52.
    Wu, C., Glosli, J., Galli, G., and Ree, F., Phys. Rev. Lett., 2002, vol. 89, no. 13, p. 135701.CrossRefADSGoogle Scholar
  53. 53.
    Ghiringhelli, L.M. Valeriani, C., Los, J.H., Meijer, E.J., Fasolino, A., and Frenkel, D. Mol. Phys., 2008, vol. 106, nos. 16–18, p. 2011.CrossRefADSGoogle Scholar
  54. 54.
    Kum, O., Ree, F.H., Stuart, S.J., and Wu, C.J., J. Chem. Phys., 2003, vol. 119, no. 12, p. 6053.CrossRefADSGoogle Scholar
  55. 55.
    Fortov, V.E., Korobenko, V.N., and Savvatimskiy, A.I., EPJ Web Conf., 2011, vol. 15, p. 02001.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology, DolgoprudnyiMoscow oblastRussia

Personalised recommendations