Skip to main content
Log in

Exploring ways to improve efficiency of gasdynamic energy separation

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

This work is devoted to research into ways to improve the efficiency of gasdynamic energy separation in the pipe Leontiev. It is shown that restoring the coefficient of temperature r depending on the Prandtl number Pr has the greatest impact on the magnitude of energy separation. The conducted analysis showed that for a gas with Pr = 0.7 the most promising ways to improve the efficiency of gasdynamic energy separation are the partial condensation of the working body and the use of regular relief that is deposited onto the wall of the supersonic channel in the pipe Leontiev. We have performed a modification of the calculation method and its verification using experimental data obtained on natural gas. The results of numerical modeling have shown that the use of regular relief (dimples) in this class of devices is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kutateladze, S.S. and Leontiev, A.I., Heat Transfer, Mass Transfer, and Friction in Turbulent Boundary Layers, New York: Taylor and Francis, 1990.

    Google Scholar 

  2. Eckert, E. and Drewitz, O., Luftfahrtforschung, 1942, vol. 19, p. 189.

    Google Scholar 

  3. Leontiev, A.I., RF Patent 2106581, 1998. Kl. MPK-6: F25B9/02, March 10, 1998.

  4. Leontiev, A.I., High Temp., 1997, vol. 35, no. 1, p. 155.

    MathSciNet  Google Scholar 

  5. Leontiev, A.I., Dokl. Phys., 1997, vol. 42, no. 6, p. 309.

    ADS  Google Scholar 

  6. Burtsev, S.A., Vestn. Mosk. Gos. Tekh. Univ., Mashinostr., 1998, no. 2, p. 65.

    Google Scholar 

  7. Burtsev, S.A., Vestn. Mosk. Gos. Tekh. Univ., Mashinostr., 1999, no. 2, p. 48.

    Google Scholar 

  8. Burtsev, S.A. and Leontiev, A.I., Izv. Ross. Akad. Nauk, Energ., 2000, no. 5, p. 101.

    Google Scholar 

  9. Leontiev, A.I., Lushchik, V.G., and Yakubenko, A.E., High Temp., 2006, vol. 44, no. 2, p. 234.

    Article  Google Scholar 

  10. Leontiev, A.I., Lushchik, V.G., and Makarova, M.S., High Temp., 2012, vol. 50, no. 6, p. 739.

    Article  Google Scholar 

  11. Volchkov, E.P. and Makarov, M.S., Izv. Ross. Akad. Nauk, Energ., 2006, no. 2, p. 19.

    Google Scholar 

  12. Leontiev, A.I., Burtsev, S.A., Vizel’, Ya.M., and Chizhikov, Yu.V., Gazov. Prom-st., 2002, no. 11, p. 72.

    Google Scholar 

  13. Burtsev, S.A., Nauka Obraz., Elektron. Zh., 2004, no. 9. http://dx.doi.org/10.7463/0904.0516097.

    Google Scholar 

  14. Burtsev, S.A., Nauka Obraz., Elektron. Zh., 2005, no. 5. http://dx.doi.org/10.7463/0505.0529473.

    Google Scholar 

  15. Isaev, S.A. and Leontiev, A.I., High Temp., 2003, vol. 41, no. 5, p. 665.

    Article  Google Scholar 

  16. Burtsev, S.A., Vasil’ev, V.K., Vinogradov, Yu.A., Kiselev, N.A., and Titov, A.A., Nauka Obraz., Elektron. Zh., 2013, no. 1. http://dx.doi.org/10.7463/0113.0532996

    Google Scholar 

  17. Titov, A.A., Izv. Ross. Akad. Nauk, Energ., 2010, no. 6, p. 126.

    Google Scholar 

  18. Zditovets, A.G. and Titov, A.A., Izv. Ross. Akad. Nauk, Energ., 2007, no. 2, p. 111.

    Google Scholar 

  19. Titov, A.A., Leontiev, A.I., Vinogradov, U.A., Zditovets, A.G., and Strongin, M.M., in Proceedings of the 14th International Heat Transfer Conference (IHTC-14), Washington, DC, United States, August 8–13, 2010, Washington, DC: American Society for Mechanical Engineers (ASME), 2010, p. 597.

    Google Scholar 

  20. Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 6567.

    Article  Google Scholar 

  21. Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., High Temp., 2012, vol. 50, no. 4, p. 496.

    Article  Google Scholar 

  22. Burtsev, S.A., Candidate’s Dissertation in Technical Science, Moscow: Bauman Moscow State Technical University, 2001.

    Google Scholar 

  23. Burtsev, S.A., Vizel’, Ya.M., Leontiev, A.I., and Chizhikov, Yu.V., RF Patent 2155303, 2000. Kl. MPK-7: F25B9/04, F25B30/00, August 27, 2000.

  24. Burtsev, S.A., Vizel’, Ya.M., Leontiev, A.I., and Chizhikov, Yu.V., RF Patent 2156271, 2000. Kl. MPK-7: C10G5/06, September 20, 2000.

  25. Burtsev, S.A., Vizel’, Ya.M., Leontiev, A.I., and Chizhikov, Yu.V., RF Patent 2162190, 2001. Kl. MPK-7: F17D1/04, F25B9/02, January 20, 2001.

  26. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (A Reference Book on Thermal and Electrical Properties of Gases and Liquids), Moscow: Nauka, 1972.

    Google Scholar 

  27. Varaksin, A.Yu., Protasov, M.V., Ivanov, T.F., and Polyakov, A.F., High Temp., 2007, vol. 45, no. 2, p. 221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Burtsev, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 1, pp. 14–21.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burtsev, S.A. Exploring ways to improve efficiency of gasdynamic energy separation. High Temp 52, 12–18 (2014). https://doi.org/10.1134/S0018151X14010064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14010064

Keywords

Navigation