Skip to main content
Log in

Generalized Rayleigh-Lamb equation

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The dynamics of the vapor-liquid interface when a solid particle heated to a high temperature comes into contact with a cold liquid is analyzed. The generalized Rayleigh-Lamb equation taking into account temperature changes in the liquid and the vapor, the saturation vapor pressure change associated with it, and the emergence of the mass flux due to liquid evaporation at the interface is deduced. At medium parameters far from the critical point, the generalized Rayleigh-Lamb equation reduces to its well-known form. Around the critical point, the difference between the obtained equation and arising modes of changes of the vapor-liquid interface can be rather considerable. Unlike the well-known Stefan problem, far from the critical liquid temperature, the phase transition temperature and, respectively, the saturation vapor pressure change with the vapor-liquid interface movement, which yields various modes of dynamics of the vapor cavity. In the special case of small variations from the stationary mode, an analytical solution for the problem on a small change in the vapor cavity radius with time was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Buchanan, D.J., J. Phys. D: Appl. Phys., 1974, vol. 7, p. 1441.

    Article  ADS  Google Scholar 

  2. Patel, P.D. and Theofanous, T.G., J. Fluid Mech., 1981, vol. 103, p. 207.

    Article  ADS  Google Scholar 

  3. Kim, B.J. and Corradini, M.L., Nuc. Sci. Eng., 1988, vol. 98, no. 1, p. 16.

    Google Scholar 

  4. Frost, D.L., Phys. Fluids, 1988, vol. 31, no. 9, p. 2954.

    Article  Google Scholar 

  5. Stepanov, V.V., Preprint of Russian Research Centre “Kurchatov Institute of Atomic Energy,” Moscow, 1991, no. 5450.

  6. Inoue, A., Aritomi, M., Minoru, T., and Tomita, Y., Chem. Eng. Commun., 1992, vol. 116, p. 189.

    Article  Google Scholar 

  7. Sirotkin, V.K., Vzaimodeistvie rasplavlennogo topliva s teplonositelem i parovoi vzryv (Interaction of Molten Fuel with Heat Transfer Fluid and Steam Explosion), Moscow: Moscow State Engineering Physics Institute, 1992.

    Google Scholar 

  8. Fletcher, D.F., Nucl. Eng. Des., 1995, vol. 155, p. 27.

    Article  Google Scholar 

  9. Matshumura, K. and Naria, H., J. Nucl. Sci. Technol., 1996, vol. 33, no. 4, p. 298.

    Article  Google Scholar 

  10. Matshumura, K. and Naria, H., J. Nucl. Sci. Technol., 1997, vol. 34, no. 3, p. 248.

    Article  Google Scholar 

  11. Dombrovskii, L.A. and Zaichik, L.I., High Temp., 2000, vol. 38, no. 6, p. 938.

    Article  Google Scholar 

  12. Furuya, M., Matshumura, K., and Kinoshita, I., J. Nucl. Sci. Technol., 2002, vol. 39, no. 10, p. 202.

    Google Scholar 

  13. Giri, A., Park, H.S., and Sehgal, B.R., Exp. Therm. Fluid Sci., 2005, no. 29, p. 295.

  14. Yasui, K., Ph. D. Thesis, Tokyo: Department of Physics of the Waseda University, 1996.

  15. Arai, T. and Abe, Y., J. Nucl. Sci. Technol., 2007, vol. 2, no. 2, p. 134.

    Google Scholar 

  16. Labuntsov, D.A. and Yagov, V.V., Mekhanika dvukh-faznykh sistem (Mechanics of Two-Phase Systems), Moscow: Moscow Power Engineering Institute (Technical University), 2000.

    Google Scholar 

  17. Nigmatulin, R.I., Dynamics of Multiphase Media, London: Taylor and Francis, 1990, vol. 1.

    Google Scholar 

  18. Wang, Y.X. and Wen, J.M., J. Phys.: Conf. Ser., 2006, vol. 48, p. 143.

    Article  MathSciNet  ADS  Google Scholar 

  19. Sinkevich, O.A., Phys. Rev. E, 2008, vol. 78, p. 036318.

    Article  ADS  Google Scholar 

  20. Sinkevich, O.A., Glazkov, V.V., Zeigarnik, Yu.A., and Ivochkin, Yu.P., in Problemy gazodinamiki i teplomassoobmena v aerokosmicheskikh tekhnologiyakh. Trudy 17 shkoly-seminara molodykh uchenykh i spetsialistov pod ruk. akad. RAN A.I. Leont’eva. Zhukovskii, 2009 (Proceedings of the XVII School-Seminar of Young Scientists and Specialists under the leadership of the RAS Academician, Professor A.I. Leontiev “Problems of Heat and Mass Transfer and Gas Dynamics in Aerospace Technology,” Zhukovsky, Moscow region, Russia, May 25–29, 2009), Zhukovsky, 2009, vol. 2, p. 271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Sinkevich, V.V. Glazkov, A.N. Kireeva, 2012, published in Teplofizika Vysokikh Temperatur, 2012, Vol. 50, No. 4, pp. 555–564.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinkevich, O.A., Glazkov, V.V. & Kireeva, A.N. Generalized Rayleigh-Lamb equation. High Temp 50, 517–526 (2012). https://doi.org/10.1134/S0018151X12030194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X12030194

Keywords

Navigation